c45c1748d8
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
35 lines
1.2 KiB
Text
35 lines
1.2 KiB
Text
Set: pp::colors
|
||
Set: pp::unicode
|
||
Defined: double
|
||
¬ 0 = 1
|
||
⊤
|
||
9
|
||
0 = 1
|
||
3 ≤ 2 + 2 + (2 + 2) + 1
|
||
3 ≤ 2 * 2 + (2 * 2 + (2 * 2 + (2 * 2 + 1)))
|
||
Assumed: a
|
||
Assumed: b
|
||
Assumed: c
|
||
Assumed: d
|
||
a * c + (a * d + (b * c + b * d))
|
||
trans (Nat::distributel a b (c + d))
|
||
(trans (congr (congr2 Nat::add (Nat::distributer a c d)) (Nat::distributer b c d))
|
||
(Nat::add_assoc (a * c) (a * d) (b * c + b * d)))
|
||
Proved: congr2_congr1
|
||
Proved: congr2_congr2
|
||
Proved: congr1_congr2
|
||
⊤
|
||
trans (congr (congr2 eq
|
||
(congr1 (congr2 Nat::add (trans (congr2 (ite (a > 0) b) (Nat::add_zeror b)) (if_a_a (a > 0) b)))
|
||
10))
|
||
(congr1 (congr2 Nat::add (if_a_a (a > 0) b)) 10))
|
||
(eq_id (b + 10))
|
||
trans (congr (congr2 (λ x : ℕ, eq ((λ x : ℕ, x + 10) x))
|
||
(trans (congr2 (ite (a > 0) b) (Nat::add_zeror b)) (if_a_a (a > 0) b)))
|
||
(congr2 (λ x : ℕ, x + 10) (if_a_a (a > 0) b)))
|
||
(eq_id (b + 10))
|
||
a * a + (a * b + (b * a + b * b))
|
||
⊤ → ⊥ refl (⊤ → ⊥) false
|
||
⊤ → ⊤ refl (⊤ → ⊤) false
|
||
⊥ → ⊤ imp_congr (refl ⊥) (λ C::1 : ⊥, eqt_intro C::1) false
|
||
⊤ ↔ ⊥ refl (⊤ ↔ ⊥) false
|