lean2/library/data/vector.lean

151 lines
5.3 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: data.vector
Author: Floris van Doorn, Leonardo de Moura
-/
import data.nat.basic
open nat prod
inductive vector (A : Type) : nat → Type :=
nil {} : vector A zero,
cons : Π {n}, A → vector A n → vector A (succ n)
namespace vector
notation a :: b := cons a b
notation `[` l:(foldr `,` (h t, cons h t) nil) `]` := l
variables {A B C : Type}
protected definition is_inhabited [instance] (h : inhabited A) : ∀ (n : nat), inhabited (vector A n),
is_inhabited 0 := inhabited.mk nil,
is_inhabited (n+1) := inhabited.mk (inhabited.value h :: inhabited.value (is_inhabited n))
theorem vector0_eq_nil : ∀ (v : vector A 0), v = nil,
vector0_eq_nil nil := rfl
definition head : Π {n : nat}, vector A (succ n) → A,
head (a::v) := a
definition tail : Π {n : nat}, vector A (succ n) → vector A n,
tail (a::v) := v
theorem head_cons {n : nat} (h : A) (t : vector A n) : head (h :: t) = h :=
rfl
theorem tail_cons {n : nat} (h : A) (t : vector A n) : tail (h :: t) = t :=
rfl
theorem eta : ∀ {n : nat} (v : vector A (succ n)), head v :: tail v = v,
eta (a::v) := rfl
definition last : Π {n : nat}, vector A (succ n) → A,
last (a::nil) := a,
last (a::v) := last v
theorem last_singleton (a : A) : last (a :: nil) = a :=
rfl
theorem last_cons {n : nat} (a : A) (v : vector A (succ n)) : last (a :: v) = last v :=
rfl
definition const : Π (n : nat), A → vector A n,
const 0 a := nil,
const (succ n) a := a :: const n a
theorem head_const (n : nat) (a : A) : head (const (succ n) a) = a :=
rfl
theorem last_const : ∀ (n : nat) (a : A), last (const (succ n) a) = a,
last_const 0 a := rfl,
last_const (succ n) a := last_const n a
definition map (f : A → B) : Π {n : nat}, vector A n → vector B n,
map nil := nil,
map (a::v) := f a :: map v
theorem map_nil (f : A → B) : map f nil = nil :=
rfl
theorem map_cons {n : nat} (f : A → B) (h : A) (t : vector A n) : map f (h :: t) = f h :: map f t :=
rfl
definition map2 (f : A → B → C) : Π {n : nat}, vector A n → vector B n → vector C n,
map2 nil nil := nil,
map2 (a::va) (b::vb) := f a b :: map2 va vb
theorem map2_nil (f : A → B → C) : map2 f nil nil = nil :=
rfl
theorem map2_cons {n : nat} (f : A → B → C) (h₁ : A) (h₂ : B) (t₁ : vector A n) (t₂ : vector B n) :
map2 f (h₁ :: t₁) (h₂ :: t₂) = f h₁ h₂ :: map2 f t₁ t₂ :=
rfl
-- Remark: why do we need to provide indices?
definition append : Π {n m : nat}, vector A n → vector A m → vector A (n ⊕ m),
@append 0 m nil w := w,
@append (succ n) m (a::v) w := a :: (append v w)
theorem append_nil {n : nat} (v : vector A n) : append nil v = v :=
rfl
theorem append_cons {n m : nat} (h : A) (t : vector A n) (v : vector A m) :
append (h::t) v = h :: (append t v) :=
rfl
definition unzip : Π {n : nat}, vector (A × B) n → vector A n × vector B n,
unzip nil := (nil, nil),
unzip ((a, b) :: v) := (a :: pr₁ (unzip v), b :: pr₂ (unzip v))
theorem unzip_nil : unzip (@nil (A × B)) = (nil, nil) :=
rfl
theorem unzip_cons {n : nat} (a : A) (b : B) (v : vector (A × B) n) :
unzip ((a, b) :: v) = (a :: pr₁ (unzip v), b :: pr₂ (unzip v)) :=
rfl
definition zip : Π {n : nat}, vector A n → vector B n → vector (A × B) n,
zip nil nil := nil,
zip (a::va) (b::vb) := ((a, b) :: zip va vb)
theorem zip_nil_nil : zip (@nil A) (@nil B) = nil :=
rfl
theorem zip_cons_cons {n : nat} (a : A) (b : B) (va : vector A n) (vb : vector B n) :
zip (a::va) (b::vb) = ((a, b) :: zip va vb) :=
rfl
theorem unzip_zip : ∀ {n : nat} (v₁ : vector A n) (v₂ : vector B n), unzip (zip v₁ v₂) = (v₁, v₂),
@unzip_zip 0 nil nil := rfl,
@unzip_zip (succ n) (a::va) (b::vb) := calc
unzip (zip (a :: va) (b :: vb))
= (a :: pr₁ (unzip (zip va vb)), b :: pr₂ (unzip (zip va vb))) : rfl
... = (a :: pr₁ (va, vb), b :: pr₂ (va, vb)) : {unzip_zip va vb}
... = (a :: va, b :: vb) : rfl
theorem zip_unzip : ∀ {n : nat} (v : vector (A × B) n), zip (pr₁ (unzip v)) (pr₂ (unzip v)) = v,
@zip_unzip 0 nil := rfl,
@zip_unzip (succ n) ((a, b) :: v) := calc
zip (pr₁ (unzip ((a, b) :: v))) (pr₂ (unzip ((a, b) :: v)))
= (a, b) :: zip (pr₁ (unzip v)) (pr₂ (unzip v)) : rfl
... = (a, b) :: v : {zip_unzip v}
/- Concat -/
definition concat : Π {n : nat}, vector A n → A → vector A (succ n),
concat nil a := a :: nil,
concat (b::v) a := b :: concat v a
theorem concat_nil (a : A) : concat nil a = a :: nil :=
rfl
theorem concat_cons {n : nat} (b : A) (v : vector A n) (a : A) : concat (b :: v) a = b :: concat v a :=
rfl
theorem last_concat : ∀ {n : nat} (v : vector A n) (a : A), last (concat v a) = a,
@last_concat 0 nil a := rfl,
@last_concat (succ n) (b::v) a := calc
last (concat (b::v) a) = last (concat v a) : rfl
... = a : last_concat v a
end vector