101 lines
3.5 KiB
Text
101 lines
3.5 KiB
Text
/-
|
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
Authors: Floris van Doorn, Jakob von Raumer
|
|
|
|
Category of sets
|
|
-/
|
|
|
|
import ..functor.basic ..category types.equiv types.lift
|
|
|
|
open eq category equiv iso is_equiv is_trunc function sigma
|
|
|
|
namespace category
|
|
|
|
definition precategory_Set.{u} [reducible] [constructor] : precategory Set.{u} :=
|
|
precategory.mk (λx y : Set, x → y)
|
|
(λx y z g f a, g (f a))
|
|
(λx a, a)
|
|
(λx y z w h g f, eq_of_homotopy (λa, idp))
|
|
(λx y f, eq_of_homotopy (λa, idp))
|
|
(λx y f, eq_of_homotopy (λa, idp))
|
|
|
|
definition Precategory_Set [reducible] [constructor] : Precategory :=
|
|
Precategory.mk Set precategory_Set
|
|
|
|
abbreviation set [constructor] := Precategory_Set
|
|
|
|
namespace set
|
|
local attribute is_equiv_subtype_eq [instance]
|
|
definition iso_of_equiv [constructor] {A B : set} (f : A ≃ B) : A ≅ B :=
|
|
iso.MK (to_fun f)
|
|
(to_inv f)
|
|
(eq_of_homotopy (left_inv (to_fun f)))
|
|
(eq_of_homotopy (right_inv (to_fun f)))
|
|
|
|
definition equiv_of_iso [constructor] {A B : set} (f : A ≅ B) : A ≃ B :=
|
|
begin
|
|
apply equiv.MK (to_hom f) (iso.to_inv f),
|
|
exact ap10 (to_right_inverse f),
|
|
exact ap10 (to_left_inverse f)
|
|
end
|
|
|
|
definition is_equiv_iso_of_equiv [constructor] (A B : set)
|
|
: is_equiv (@iso_of_equiv A B) :=
|
|
adjointify _ (λf, equiv_of_iso f)
|
|
(λf, proof iso_eq idp qed)
|
|
(λf, equiv_eq idp)
|
|
|
|
local attribute is_equiv_iso_of_equiv [instance]
|
|
|
|
definition iso_of_eq_eq_compose (A B : Set) : @iso_of_eq _ _ A B =
|
|
@iso_of_equiv A B ∘ @equiv_of_eq A B ∘ subtype_eq_inv _ _ ∘
|
|
@ap _ _ (to_fun (trunctype.sigma_char 0)) A B :=
|
|
eq_of_homotopy (λp, eq.rec_on p idp)
|
|
|
|
definition equiv_equiv_iso (A B : set) : (A ≃ B) ≃ (A ≅ B) :=
|
|
equiv.MK (λf, iso_of_equiv f)
|
|
(λf, proof equiv.MK (to_hom f)
|
|
(iso.to_inv f)
|
|
(ap10 (to_right_inverse f))
|
|
(ap10 (to_left_inverse f)) qed)
|
|
(λf, proof iso_eq idp qed)
|
|
(λf, proof equiv_eq idp qed)
|
|
|
|
definition equiv_eq_iso (A B : set) : (A ≃ B) = (A ≅ B) :=
|
|
ua !equiv_equiv_iso
|
|
|
|
definition is_univalent_Set (A B : set) : is_equiv (iso_of_eq : A = B → A ≅ B) :=
|
|
assert H₁ : is_equiv (@iso_of_equiv A B ∘ @equiv_of_eq A B ∘ subtype_eq_inv _ _ ∘
|
|
@ap _ _ (to_fun (trunctype.sigma_char 0)) A B), from
|
|
@is_equiv_compose _ _ _ _ _
|
|
(@is_equiv_compose _ _ _ _ _
|
|
(@is_equiv_compose _ _ _ _ _
|
|
_
|
|
(@is_equiv_subtype_eq_inv _ _ _ _ _))
|
|
!univalence)
|
|
!is_equiv_iso_of_equiv,
|
|
let H₂ := (iso_of_eq_eq_compose A B)⁻¹ in
|
|
begin
|
|
rewrite H₂ at H₁,
|
|
assumption
|
|
end
|
|
end set
|
|
|
|
definition category_Set [instance] [constructor] : category Set :=
|
|
category.mk precategory_Set set.is_univalent_Set
|
|
|
|
definition Category_Set [reducible] [constructor] : Category :=
|
|
Category.mk Set category_Set
|
|
|
|
abbreviation cset [constructor] := Category_Set
|
|
|
|
open functor lift
|
|
definition functor_lift.{u v} [constructor] : set.{u} ⇒ set.{max u v} :=
|
|
functor.mk tlift
|
|
(λa b, lift_functor)
|
|
(λa, eq_of_homotopy (λx, by induction x; reflexivity))
|
|
(λa b c g f, eq_of_homotopy (λx, by induction x; reflexivity))
|
|
|
|
|
|
end category
|