496 lines
18 KiB
Text
496 lines
18 KiB
Text
/-
|
||
Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Floris van Doorn, Leonardo de Moura, Jeremy Avigad
|
||
|
||
The order relation on the natural numbers.
|
||
-/
|
||
import .basic algebra.ordered_ring
|
||
open eq.ops
|
||
|
||
namespace nat
|
||
|
||
/- lt and le -/
|
||
|
||
protected theorem le_of_lt_or_eq {m n : ℕ} (H : m < n ∨ m = n) : m ≤ n :=
|
||
nat.le_of_eq_or_lt (or.swap H)
|
||
|
||
protected theorem lt_or_eq_of_le {m n : ℕ} (H : m ≤ n) : m < n ∨ m = n :=
|
||
or.swap (nat.eq_or_lt_of_le H)
|
||
|
||
protected theorem le_iff_lt_or_eq (m n : ℕ) : m ≤ n ↔ m < n ∨ m = n :=
|
||
iff.intro nat.lt_or_eq_of_le nat.le_of_lt_or_eq
|
||
|
||
protected theorem lt_of_le_and_ne {m n : ℕ} (H1 : m ≤ n) : m ≠ n → m < n :=
|
||
or_resolve_right (nat.eq_or_lt_of_le H1)
|
||
|
||
protected theorem lt_iff_le_and_ne (m n : ℕ) : m < n ↔ m ≤ n ∧ m ≠ n :=
|
||
iff.intro
|
||
(take H, and.intro (nat.le_of_lt H) (take H1, !nat.lt_irrefl (H1 ▸ H)))
|
||
(and.rec nat.lt_of_le_and_ne)
|
||
|
||
theorem le_add_right (n k : ℕ) : n ≤ n + k :=
|
||
nat.rec !nat.le_refl (λ k, le_succ_of_le) k
|
||
|
||
theorem le_add_left (n m : ℕ): n ≤ m + n :=
|
||
!add.comm ▸ !le_add_right
|
||
|
||
theorem le.intro {n m k : ℕ} (h : n + k = m) : n ≤ m :=
|
||
h ▸ !le_add_right
|
||
|
||
theorem le.elim {n m : ℕ} : n ≤ m → ∃ k, n + k = m :=
|
||
le.rec (exists.intro 0 rfl) (λm h, Exists.rec
|
||
(λ k H, exists.intro (succ k) (H ▸ rfl)))
|
||
|
||
protected theorem le_total {m n : ℕ} : m ≤ n ∨ n ≤ m :=
|
||
or.imp_left nat.le_of_lt !nat.lt_or_ge
|
||
|
||
/- addition -/
|
||
|
||
protected theorem add_le_add_left {n m : ℕ} (H : n ≤ m) (k : ℕ) : k + n ≤ k + m :=
|
||
obtain l Hl, from le.elim H, le.intro (Hl ▸ !add.assoc)
|
||
|
||
protected theorem add_le_add_right {n m : ℕ} (H : n ≤ m) (k : ℕ) : n + k ≤ m + k :=
|
||
!add.comm ▸ !add.comm ▸ nat.add_le_add_left H k
|
||
|
||
protected theorem le_of_add_le_add_left {k n m : ℕ} (H : k + n ≤ k + m) : n ≤ m :=
|
||
obtain l Hl, from le.elim H, le.intro (nat.add_left_cancel (!add.assoc⁻¹ ⬝ Hl))
|
||
|
||
protected theorem lt_of_add_lt_add_left {k n m : ℕ} (H : k + n < k + m) : n < m :=
|
||
let H' := nat.le_of_lt H in
|
||
nat.lt_of_le_and_ne (nat.le_of_add_le_add_left H') (assume Heq, !nat.lt_irrefl (Heq ▸ H))
|
||
|
||
protected theorem add_lt_add_left {n m : ℕ} (H : n < m) (k : ℕ) : k + n < k + m :=
|
||
lt_of_succ_le (!add_succ ▸ nat.add_le_add_left (succ_le_of_lt H) k)
|
||
|
||
protected theorem add_lt_add_right {n m : ℕ} (H : n < m) (k : ℕ) : n + k < m + k :=
|
||
!add.comm ▸ !add.comm ▸ nat.add_lt_add_left H k
|
||
|
||
protected theorem lt_add_of_pos_right {n k : ℕ} (H : k > 0) : n < n + k :=
|
||
!add_zero ▸ nat.add_lt_add_left H n
|
||
|
||
/- multiplication -/
|
||
|
||
theorem mul_le_mul_left {n m : ℕ} (k : ℕ) (H : n ≤ m) : k * n ≤ k * m :=
|
||
obtain (l : ℕ) (Hl : n + l = m), from le.elim H,
|
||
have k * n + k * l = k * m, by rewrite [-left_distrib, Hl],
|
||
le.intro this
|
||
|
||
theorem mul_le_mul_right {n m : ℕ} (k : ℕ) (H : n ≤ m) : n * k ≤ m * k :=
|
||
!mul.comm ▸ !mul.comm ▸ !mul_le_mul_left H
|
||
|
||
protected theorem mul_le_mul {n m k l : ℕ} (H1 : n ≤ k) (H2 : m ≤ l) : n * m ≤ k * l :=
|
||
nat.le_trans (!nat.mul_le_mul_right H1) (!nat.mul_le_mul_left H2)
|
||
|
||
protected theorem mul_lt_mul_of_pos_left {n m k : ℕ} (H : n < m) (Hk : k > 0) : k * n < k * m :=
|
||
nat.lt_of_lt_of_le (nat.lt_add_of_pos_right Hk) (!mul_succ ▸ nat.mul_le_mul_left k (succ_le_of_lt H))
|
||
|
||
protected theorem mul_lt_mul_of_pos_right {n m k : ℕ} (H : n < m) (Hk : k > 0) : n * k < m * k :=
|
||
!mul.comm ▸ !mul.comm ▸ nat.mul_lt_mul_of_pos_left H Hk
|
||
|
||
/- nat is an instance of a linearly ordered semiring and a lattice -/
|
||
|
||
protected definition decidable_linear_ordered_semiring [reducible] [trans_instance] :
|
||
decidable_linear_ordered_semiring nat :=
|
||
⦃ decidable_linear_ordered_semiring, nat.comm_semiring,
|
||
add_left_cancel := @nat.add_left_cancel,
|
||
add_right_cancel := @nat.add_right_cancel,
|
||
lt := nat.lt,
|
||
le := nat.le,
|
||
le_refl := nat.le_refl,
|
||
le_trans := @nat.le_trans,
|
||
le_antisymm := @nat.le_antisymm,
|
||
le_total := @nat.le_total,
|
||
le_iff_lt_or_eq := @nat.le_iff_lt_or_eq,
|
||
le_of_lt := @nat.le_of_lt,
|
||
lt_irrefl := @nat.lt_irrefl,
|
||
lt_of_lt_of_le := @nat.lt_of_lt_of_le,
|
||
lt_of_le_of_lt := @nat.lt_of_le_of_lt,
|
||
lt_of_add_lt_add_left := @nat.lt_of_add_lt_add_left,
|
||
add_lt_add_left := @nat.add_lt_add_left,
|
||
add_le_add_left := @nat.add_le_add_left,
|
||
le_of_add_le_add_left := @nat.le_of_add_le_add_left,
|
||
zero_lt_one := zero_lt_succ 0,
|
||
mul_le_mul_of_nonneg_left := (take a b c H1 H2, nat.mul_le_mul_left c H1),
|
||
mul_le_mul_of_nonneg_right := (take a b c H1 H2, nat.mul_le_mul_right c H1),
|
||
mul_lt_mul_of_pos_left := @nat.mul_lt_mul_of_pos_left,
|
||
mul_lt_mul_of_pos_right := @nat.mul_lt_mul_of_pos_right,
|
||
decidable_lt := nat.decidable_lt ⦄
|
||
|
||
definition nat_has_dvd [instance] [priority nat.prio] : has_dvd nat :=
|
||
has_dvd.mk has_dvd.dvd
|
||
|
||
theorem add_pos_left {a : ℕ} (H : 0 < a) (b : ℕ) : 0 < a + b :=
|
||
@add_pos_of_pos_of_nonneg _ _ a b H !zero_le
|
||
|
||
theorem add_pos_right {a : ℕ} (H : 0 < a) (b : ℕ) : 0 < b + a :=
|
||
by rewrite add.comm; apply add_pos_left H b
|
||
|
||
theorem add_eq_zero_iff_eq_zero_and_eq_zero {a b : ℕ} :
|
||
a + b = 0 ↔ a = 0 ∧ b = 0 :=
|
||
@add_eq_zero_iff_eq_zero_and_eq_zero_of_nonneg_of_nonneg _ _ a b !zero_le !zero_le
|
||
|
||
theorem le_add_of_le_left {a b c : ℕ} (H : b ≤ c) : b ≤ a + c :=
|
||
@le_add_of_nonneg_of_le _ _ a b c !zero_le H
|
||
|
||
theorem le_add_of_le_right {a b c : ℕ} (H : b ≤ c) : b ≤ c + a :=
|
||
@le_add_of_le_of_nonneg _ _ a b c H !zero_le
|
||
|
||
theorem lt_add_of_lt_left {b c : ℕ} (H : b < c) (a : ℕ) : b < a + c :=
|
||
@lt_add_of_nonneg_of_lt _ _ a b c !zero_le H
|
||
|
||
theorem lt_add_of_lt_right {b c : ℕ} (H : b < c) (a : ℕ) : b < c + a :=
|
||
@lt_add_of_lt_of_nonneg _ _ a b c H !zero_le
|
||
|
||
theorem lt_of_mul_lt_mul_left {a b c : ℕ} (H : c * a < c * b) : a < b :=
|
||
@lt_of_mul_lt_mul_left _ _ a b c H !zero_le
|
||
|
||
theorem lt_of_mul_lt_mul_right {a b c : ℕ} (H : a * c < b * c) : a < b :=
|
||
@lt_of_mul_lt_mul_right _ _ a b c H !zero_le
|
||
|
||
theorem pos_of_mul_pos_left {a b : ℕ} (H : 0 < a * b) : 0 < b :=
|
||
@pos_of_mul_pos_left _ _ a b H !zero_le
|
||
|
||
theorem pos_of_mul_pos_right {a b : ℕ} (H : 0 < a * b) : 0 < a :=
|
||
@pos_of_mul_pos_right _ _ a b H !zero_le
|
||
|
||
theorem zero_le_one : (0:nat) ≤ 1 :=
|
||
dec_trivial
|
||
|
||
/- properties specific to nat -/
|
||
|
||
theorem lt_intro {n m k : ℕ} (H : succ n + k = m) : n < m :=
|
||
lt_of_succ_le (le.intro H)
|
||
|
||
theorem lt_elim {n m : ℕ} (H : n < m) : ∃k, succ n + k = m :=
|
||
le.elim (succ_le_of_lt H)
|
||
|
||
theorem lt_add_succ (n m : ℕ) : n < n + succ m :=
|
||
lt_intro !succ_add_eq_succ_add
|
||
|
||
theorem eq_zero_of_le_zero {n : ℕ} (H : n ≤ 0) : n = 0 :=
|
||
obtain (k : ℕ) (Hk : n + k = 0), from le.elim H,
|
||
eq_zero_of_add_eq_zero_right Hk
|
||
|
||
/- succ and pred -/
|
||
|
||
theorem le_of_lt_succ {m n : nat} : m < succ n → m ≤ n :=
|
||
le_of_succ_le_succ
|
||
|
||
theorem lt_iff_succ_le (m n : nat) : m < n ↔ succ m ≤ n :=
|
||
iff.rfl
|
||
|
||
theorem lt_succ_iff_le (m n : nat) : m < succ n ↔ m ≤ n :=
|
||
iff.intro le_of_lt_succ lt_succ_of_le
|
||
|
||
theorem self_le_succ (n : ℕ) : n ≤ succ n :=
|
||
le.intro !add_one
|
||
|
||
theorem succ_le_or_eq_of_le {n m : ℕ} : n ≤ m → succ n ≤ m ∨ n = m :=
|
||
lt_or_eq_of_le
|
||
|
||
theorem pred_le_of_le_succ {n m : ℕ} : n ≤ succ m → pred n ≤ m :=
|
||
pred_le_pred
|
||
|
||
theorem succ_le_of_le_pred {n m : ℕ} : succ n ≤ m → n ≤ pred m :=
|
||
pred_le_pred
|
||
|
||
theorem pred_le_pred_of_le {n m : ℕ} : n ≤ m → pred n ≤ pred m :=
|
||
pred_le_pred
|
||
|
||
theorem pre_lt_of_lt {n m : ℕ} : n < m → pred n < m :=
|
||
lt_of_le_of_lt !pred_le
|
||
|
||
theorem lt_of_pred_lt_pred {n m : ℕ} (H : pred n < pred m) : n < m :=
|
||
lt_of_not_ge
|
||
(suppose m ≤ n,
|
||
not_lt_of_ge (pred_le_pred_of_le this) H)
|
||
|
||
theorem le_or_eq_succ_of_le_succ {n m : ℕ} (H : n ≤ succ m) : n ≤ m ∨ n = succ m :=
|
||
or.imp_left le_of_succ_le_succ (succ_le_or_eq_of_le H)
|
||
|
||
theorem le_pred_self (n : ℕ) : pred n ≤ n :=
|
||
!pred_le
|
||
|
||
theorem succ_pos (n : ℕ) : 0 < succ n :=
|
||
!zero_lt_succ
|
||
|
||
theorem succ_pred_of_pos {n : ℕ} (H : n > 0) : succ (pred n) = n :=
|
||
(or_resolve_right (eq_zero_or_eq_succ_pred n) (ne.symm (ne_of_lt H)))⁻¹
|
||
|
||
theorem exists_eq_succ_of_lt {n : ℕ} : Π {m : ℕ}, n < m → ∃k, m = succ k
|
||
| 0 H := absurd H !not_lt_zero
|
||
| (succ k) H := exists.intro k rfl
|
||
|
||
theorem lt_succ_self (n : ℕ) : n < succ n :=
|
||
lt.base n
|
||
|
||
lemma lt_succ_of_lt {i j : nat} : i < j → i < succ j :=
|
||
assume Plt, lt.trans Plt (self_lt_succ j)
|
||
|
||
/- other forms of induction -/
|
||
|
||
protected definition strong_rec_on {P : nat → Type} (n : ℕ) (H : ∀n, (∀m, m < n → P m) → P n) : P n :=
|
||
nat.rec (λm h, absurd h !not_lt_zero)
|
||
(λn' (IH : ∀ {m : ℕ}, m < n' → P m) m l,
|
||
or.by_cases (lt_or_eq_of_le (le_of_lt_succ l))
|
||
IH (λ e, eq.rec (H n' @IH) e⁻¹)) (succ n) n !lt_succ_self
|
||
|
||
protected theorem strong_induction_on {P : nat → Prop} (n : ℕ) (H : ∀n, (∀m, m < n → P m) → P n) :
|
||
P n :=
|
||
nat.strong_rec_on n H
|
||
|
||
protected theorem case_strong_induction_on {P : nat → Prop} (a : nat) (H0 : P 0)
|
||
(Hind : ∀(n : nat), (∀m, m ≤ n → P m) → P (succ n)) : P a :=
|
||
nat.strong_induction_on a
|
||
(take n,
|
||
show (∀ m, m < n → P m) → P n, from
|
||
nat.cases_on n
|
||
(suppose (∀ m, m < 0 → P m), show P 0, from H0)
|
||
(take n,
|
||
suppose (∀ m, m < succ n → P m),
|
||
show P (succ n), from
|
||
Hind n (take m, assume H1 : m ≤ n, this _ (lt_succ_of_le H1))))
|
||
|
||
/- pos -/
|
||
|
||
theorem by_cases_zero_pos {P : ℕ → Prop} (y : ℕ) (H0 : P 0) (H1 : ∀ {y : nat}, y > 0 → P y) :
|
||
P y :=
|
||
nat.cases_on y H0 (take y, H1 !succ_pos)
|
||
|
||
theorem eq_zero_or_pos (n : ℕ) : n = 0 ∨ n > 0 :=
|
||
or_of_or_of_imp_left
|
||
(or.swap (lt_or_eq_of_le !zero_le))
|
||
(suppose 0 = n, by subst n)
|
||
|
||
theorem pos_of_ne_zero {n : ℕ} (H : n ≠ 0) : n > 0 :=
|
||
or.elim !eq_zero_or_pos (take H2 : n = 0, by contradiction) (take H2 : n > 0, H2)
|
||
|
||
theorem ne_zero_of_pos {n : ℕ} (H : n > 0) : n ≠ 0 :=
|
||
ne.symm (ne_of_lt H)
|
||
|
||
theorem exists_eq_succ_of_pos {n : ℕ} (H : n > 0) : ∃l, n = succ l :=
|
||
exists_eq_succ_of_lt H
|
||
|
||
theorem pos_of_dvd_of_pos {m n : ℕ} (H1 : m ∣ n) (H2 : n > 0) : m > 0 :=
|
||
pos_of_ne_zero
|
||
(suppose m = 0,
|
||
assert n = 0, from eq_zero_of_zero_dvd (this ▸ H1),
|
||
ne_of_lt H2 (by subst n))
|
||
|
||
/- multiplication -/
|
||
|
||
theorem mul_lt_mul_of_le_of_lt {n m k l : ℕ} (Hk : k > 0) (H1 : n ≤ k) (H2 : m < l) :
|
||
n * m < k * l :=
|
||
lt_of_le_of_lt (mul_le_mul_right m H1) (mul_lt_mul_of_pos_left H2 Hk)
|
||
|
||
theorem mul_lt_mul_of_lt_of_le {n m k l : ℕ} (Hl : l > 0) (H1 : n < k) (H2 : m ≤ l) :
|
||
n * m < k * l :=
|
||
lt_of_le_of_lt (mul_le_mul_left n H2) (mul_lt_mul_of_pos_right H1 Hl)
|
||
|
||
theorem mul_lt_mul_of_le_of_le {n m k l : ℕ} (H1 : n < k) (H2 : m < l) : n * m < k * l :=
|
||
have H3 : n * m ≤ k * m, from mul_le_mul_right m (le_of_lt H1),
|
||
have H4 : k * m < k * l, from mul_lt_mul_of_pos_left H2 (lt_of_le_of_lt !zero_le H1),
|
||
lt_of_le_of_lt H3 H4
|
||
|
||
theorem eq_of_mul_eq_mul_left {m k n : ℕ} (Hn : n > 0) (H : n * m = n * k) : m = k :=
|
||
have n * m ≤ n * k, by rewrite H,
|
||
have m ≤ k, from le_of_mul_le_mul_left this Hn,
|
||
have n * k ≤ n * m, by rewrite H,
|
||
have k ≤ m, from le_of_mul_le_mul_left this Hn,
|
||
le.antisymm `m ≤ k` this
|
||
|
||
theorem eq_of_mul_eq_mul_right {n m k : ℕ} (Hm : m > 0) (H : n * m = k * m) : n = k :=
|
||
eq_of_mul_eq_mul_left Hm (!mul.comm ▸ !mul.comm ▸ H)
|
||
|
||
theorem eq_zero_or_eq_of_mul_eq_mul_left {n m k : ℕ} (H : n * m = n * k) : n = 0 ∨ m = k :=
|
||
or_of_or_of_imp_right !eq_zero_or_pos
|
||
(assume Hn : n > 0, eq_of_mul_eq_mul_left Hn H)
|
||
|
||
theorem eq_zero_or_eq_of_mul_eq_mul_right {n m k : ℕ} (H : n * m = k * m) : m = 0 ∨ n = k :=
|
||
eq_zero_or_eq_of_mul_eq_mul_left (!mul.comm ▸ !mul.comm ▸ H)
|
||
|
||
theorem eq_one_of_mul_eq_one_right {n m : ℕ} (H : n * m = 1) : n = 1 :=
|
||
have H2 : n * m > 0, by rewrite H; apply succ_pos,
|
||
or.elim (le_or_gt n 1)
|
||
(suppose n ≤ 1,
|
||
have n > 0, from pos_of_mul_pos_right H2,
|
||
show n = 1, from le.antisymm `n ≤ 1` (succ_le_of_lt this))
|
||
(suppose n > 1,
|
||
have m > 0, from pos_of_mul_pos_left H2,
|
||
have n * m ≥ 2 * 1, from nat.mul_le_mul (succ_le_of_lt `n > 1`) (succ_le_of_lt this),
|
||
have 1 ≥ 2, from !mul_one ▸ H ▸ this,
|
||
absurd !lt_succ_self (not_lt_of_ge this))
|
||
|
||
theorem eq_one_of_mul_eq_one_left {n m : ℕ} (H : n * m = 1) : m = 1 :=
|
||
eq_one_of_mul_eq_one_right (!mul.comm ▸ H)
|
||
|
||
theorem eq_one_of_mul_eq_self_left {n m : ℕ} (Hpos : n > 0) (H : m * n = n) : m = 1 :=
|
||
eq_of_mul_eq_mul_right Hpos (H ⬝ !one_mul⁻¹)
|
||
|
||
theorem eq_one_of_mul_eq_self_right {n m : ℕ} (Hpos : m > 0) (H : m * n = m) : n = 1 :=
|
||
eq_one_of_mul_eq_self_left Hpos (!mul.comm ▸ H)
|
||
|
||
theorem eq_one_of_dvd_one {n : ℕ} (H : n ∣ 1) : n = 1 :=
|
||
dvd.elim H
|
||
(take m, suppose 1 = n * m,
|
||
eq_one_of_mul_eq_one_right this⁻¹)
|
||
|
||
/- min and max -/
|
||
open decidable
|
||
|
||
theorem min_zero [simp] (a : ℕ) : min a 0 = 0 :=
|
||
by rewrite [min_eq_right !zero_le]
|
||
|
||
theorem zero_min [simp] (a : ℕ) : min 0 a = 0 :=
|
||
by rewrite [min_eq_left !zero_le]
|
||
|
||
theorem max_zero [simp] (a : ℕ) : max a 0 = a :=
|
||
by rewrite [max_eq_left !zero_le]
|
||
|
||
theorem zero_max [simp] (a : ℕ) : max 0 a = a :=
|
||
by rewrite [max_eq_right !zero_le]
|
||
|
||
theorem min_succ_succ [simp] (a b : ℕ) : min (succ a) (succ b) = succ (min a b) :=
|
||
or.elim !lt_or_ge
|
||
(suppose a < b, by rewrite [min_eq_left_of_lt this, min_eq_left_of_lt (succ_lt_succ this)])
|
||
(suppose a ≥ b, by rewrite [min_eq_right this, min_eq_right (succ_le_succ this)])
|
||
|
||
theorem max_succ_succ [simp] (a b : ℕ) : max (succ a) (succ b) = succ (max a b) :=
|
||
or.elim !lt_or_ge
|
||
(suppose a < b, by rewrite [max_eq_right_of_lt this, max_eq_right_of_lt (succ_lt_succ this)])
|
||
(suppose a ≥ b, by rewrite [max_eq_left this, max_eq_left (succ_le_succ this)])
|
||
|
||
/- In algebra.ordered_group, these next four are only proved for additive groups, not additive
|
||
semigroups. -/
|
||
|
||
protected theorem min_add_add_left (a b c : ℕ) : min (a + b) (a + c) = a + min b c :=
|
||
decidable.by_cases
|
||
(suppose b ≤ c,
|
||
assert a + b ≤ a + c, from add_le_add_left this _,
|
||
by rewrite [min_eq_left `b ≤ c`, min_eq_left this])
|
||
(suppose ¬ b ≤ c,
|
||
assert c ≤ b, from le_of_lt (lt_of_not_ge this),
|
||
assert a + c ≤ a + b, from add_le_add_left this _,
|
||
by rewrite [min_eq_right `c ≤ b`, min_eq_right this])
|
||
|
||
protected theorem min_add_add_right (a b c : ℕ) : min (a + c) (b + c) = min a b + c :=
|
||
by rewrite [add.comm a c, add.comm b c, add.comm _ c]; apply nat.min_add_add_left
|
||
|
||
protected theorem max_add_add_left (a b c : ℕ) : max (a + b) (a + c) = a + max b c :=
|
||
decidable.by_cases
|
||
(suppose b ≤ c,
|
||
assert a + b ≤ a + c, from add_le_add_left this _,
|
||
by rewrite [max_eq_right `b ≤ c`, max_eq_right this])
|
||
(suppose ¬ b ≤ c,
|
||
assert c ≤ b, from le_of_lt (lt_of_not_ge this),
|
||
assert a + c ≤ a + b, from add_le_add_left this _,
|
||
by rewrite [max_eq_left `c ≤ b`, max_eq_left this])
|
||
|
||
protected theorem max_add_add_right (a b c : ℕ) : max (a + c) (b + c) = max a b + c :=
|
||
by rewrite [add.comm a c, add.comm b c, add.comm _ c]; apply nat.max_add_add_left
|
||
|
||
/- least and greatest -/
|
||
|
||
section least_and_greatest
|
||
variable (P : ℕ → Prop)
|
||
variable [decP : ∀ n, decidable (P n)]
|
||
include decP
|
||
|
||
-- returns the least i < n satisfying P, or n if there is none
|
||
definition least : ℕ → ℕ
|
||
| 0 := 0
|
||
| (succ n) := if P (least n) then least n else succ n
|
||
|
||
theorem least_of_bound {n : ℕ} (H : P n) : P (least P n) :=
|
||
begin
|
||
induction n with [m, ih],
|
||
rewrite ↑least,
|
||
apply H,
|
||
rewrite ↑least,
|
||
cases decidable.em (P (least P m)) with [Hlp, Hlp],
|
||
rewrite [if_pos Hlp],
|
||
apply Hlp,
|
||
rewrite [if_neg Hlp],
|
||
apply H
|
||
end
|
||
|
||
theorem least_le (n : ℕ) : least P n ≤ n:=
|
||
begin
|
||
induction n with [m, ih],
|
||
{rewrite ↑least},
|
||
rewrite ↑least,
|
||
cases decidable.em (P (least P m)) with [Psm, Pnsm],
|
||
rewrite [if_pos Psm],
|
||
apply le.trans ih !le_succ,
|
||
rewrite [if_neg Pnsm]
|
||
end
|
||
|
||
theorem least_of_lt {i n : ℕ} (ltin : i < n) (H : P i) : P (least P n) :=
|
||
begin
|
||
induction n with [m, ih],
|
||
exact absurd ltin !not_lt_zero,
|
||
rewrite ↑least,
|
||
cases decidable.em (P (least P m)) with [Psm, Pnsm],
|
||
rewrite [if_pos Psm],
|
||
apply Psm,
|
||
rewrite [if_neg Pnsm],
|
||
cases (lt_or_eq_of_le (le_of_lt_succ ltin)) with [Hlt, Heq],
|
||
exact absurd (ih Hlt) Pnsm,
|
||
rewrite Heq at H,
|
||
exact absurd (least_of_bound P H) Pnsm
|
||
end
|
||
|
||
theorem ge_least_of_lt {i n : ℕ} (ltin : i < n) (Hi : P i) : i ≥ least P n :=
|
||
begin
|
||
induction n with [m, ih],
|
||
exact absurd ltin !not_lt_zero,
|
||
rewrite ↑least,
|
||
cases decidable.em (P (least P m)) with [Psm, Pnsm],
|
||
rewrite [if_pos Psm],
|
||
cases (lt_or_eq_of_le (le_of_lt_succ ltin)) with [Hlt, Heq],
|
||
apply ih Hlt,
|
||
rewrite Heq,
|
||
apply least_le,
|
||
rewrite [if_neg Pnsm],
|
||
cases (lt_or_eq_of_le (le_of_lt_succ ltin)) with [Hlt, Heq],
|
||
apply absurd (least_of_lt P Hlt Hi) Pnsm,
|
||
rewrite Heq at Hi,
|
||
apply absurd (least_of_bound P Hi) Pnsm
|
||
end
|
||
|
||
theorem least_lt {n i : ℕ} (ltin : i < n) (Hi : P i) : least P n < n :=
|
||
lt_of_le_of_lt (ge_least_of_lt P ltin Hi) ltin
|
||
|
||
-- returns the largest i < n satisfying P, or n if there is none.
|
||
definition greatest : ℕ → ℕ
|
||
| 0 := 0
|
||
| (succ n) := if P n then n else greatest n
|
||
|
||
theorem greatest_of_lt {i n : ℕ} (ltin : i < n) (Hi : P i) : P (greatest P n) :=
|
||
begin
|
||
induction n with [m, ih],
|
||
{exact absurd ltin !not_lt_zero},
|
||
{cases (decidable.em (P m)) with [Psm, Pnsm],
|
||
{rewrite [↑greatest, if_pos Psm]; exact Psm},
|
||
{rewrite [↑greatest, if_neg Pnsm],
|
||
have neim : i ≠ m, from assume H : i = m, absurd (H ▸ Hi) Pnsm,
|
||
have ltim : i < m, from lt_of_le_of_ne (le_of_lt_succ ltin) neim,
|
||
apply ih ltim}}
|
||
end
|
||
|
||
theorem le_greatest_of_lt {i n : ℕ} (ltin : i < n) (Hi : P i) : i ≤ greatest P n :=
|
||
begin
|
||
induction n with [m, ih],
|
||
{exact absurd ltin !not_lt_zero},
|
||
{cases (decidable.em (P m)) with [Psm, Pnsm],
|
||
{rewrite [↑greatest, if_pos Psm], apply le_of_lt_succ ltin},
|
||
{rewrite [↑greatest, if_neg Pnsm],
|
||
have neim : i ≠ m, from assume H : i = m, absurd (H ▸ Hi) Pnsm,
|
||
have ltim : i < m, from lt_of_le_of_ne (le_of_lt_succ ltin) neim,
|
||
apply ih ltim}}
|
||
end
|
||
|
||
end least_and_greatest
|
||
|
||
end nat
|