087c44d614
For example, the pointed suspension operation was called Susp before this commit, but now is called psusp
231 lines
7.4 KiB
Text
231 lines
7.4 KiB
Text
/-
|
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
Authors: Floris van Doorn
|
|
|
|
Declaration of suspension
|
|
-/
|
|
|
|
import hit.pushout types.pointed cubical.square
|
|
|
|
open pushout unit eq equiv equiv.ops
|
|
|
|
definition susp (A : Type) : Type := pushout (λ(a : A), star) (λ(a : A), star)
|
|
|
|
namespace susp
|
|
variable {A : Type}
|
|
|
|
definition north {A : Type} : susp A :=
|
|
inl star
|
|
|
|
definition south {A : Type} : susp A :=
|
|
inr star
|
|
|
|
definition merid (a : A) : @north A = @south A :=
|
|
glue a
|
|
|
|
protected definition rec {P : susp A → Type} (PN : P north) (PS : P south)
|
|
(Pm : Π(a : A), PN =[merid a] PS) (x : susp A) : P x :=
|
|
begin
|
|
induction x with u u,
|
|
{ cases u, exact PN},
|
|
{ cases u, exact PS},
|
|
{ apply Pm},
|
|
end
|
|
|
|
protected definition rec_on [reducible] {P : susp A → Type} (y : susp A)
|
|
(PN : P north) (PS : P south) (Pm : Π(a : A), PN =[merid a] PS) : P y :=
|
|
susp.rec PN PS Pm y
|
|
|
|
theorem rec_merid {P : susp A → Type} (PN : P north) (PS : P south)
|
|
(Pm : Π(a : A), PN =[merid a] PS) (a : A)
|
|
: apdo (susp.rec PN PS Pm) (merid a) = Pm a :=
|
|
!rec_glue
|
|
|
|
protected definition elim {P : Type} (PN : P) (PS : P) (Pm : A → PN = PS)
|
|
(x : susp A) : P :=
|
|
susp.rec PN PS (λa, pathover_of_eq (Pm a)) x
|
|
|
|
protected definition elim_on [reducible] {P : Type} (x : susp A)
|
|
(PN : P) (PS : P) (Pm : A → PN = PS) : P :=
|
|
susp.elim PN PS Pm x
|
|
|
|
theorem elim_merid {P : Type} {PN PS : P} (Pm : A → PN = PS) (a : A)
|
|
: ap (susp.elim PN PS Pm) (merid a) = Pm a :=
|
|
begin
|
|
apply eq_of_fn_eq_fn_inv !(pathover_constant (merid a)),
|
|
rewrite [▸*,-apdo_eq_pathover_of_eq_ap,↑susp.elim,rec_merid],
|
|
end
|
|
|
|
protected definition elim_type (PN : Type) (PS : Type) (Pm : A → PN ≃ PS)
|
|
(x : susp A) : Type :=
|
|
susp.elim PN PS (λa, ua (Pm a)) x
|
|
|
|
protected definition elim_type_on [reducible] (x : susp A)
|
|
(PN : Type) (PS : Type) (Pm : A → PN ≃ PS) : Type :=
|
|
susp.elim_type PN PS Pm x
|
|
|
|
theorem elim_type_merid (PN : Type) (PS : Type) (Pm : A → PN ≃ PS)
|
|
(a : A) : transport (susp.elim_type PN PS Pm) (merid a) = Pm a :=
|
|
by rewrite [tr_eq_cast_ap_fn,↑susp.elim_type,elim_merid];apply cast_ua_fn
|
|
|
|
end susp
|
|
|
|
attribute susp.north susp.south [constructor]
|
|
attribute susp.rec susp.elim [unfold 6] [recursor 6]
|
|
attribute susp.elim_type [unfold 5]
|
|
attribute susp.rec_on susp.elim_on [unfold 3]
|
|
attribute susp.elim_type_on [unfold 2]
|
|
|
|
namespace susp
|
|
open pointed
|
|
|
|
variables {X Y Z : pType}
|
|
|
|
definition pointed_susp [instance] [constructor] (X : Type) : pointed (susp X) :=
|
|
pointed.mk north
|
|
|
|
definition psusp [constructor] (X : Type) : pType :=
|
|
pointed.mk' (susp X)
|
|
|
|
definition psusp_functor (f : X →* Y) : psusp X →* psusp Y :=
|
|
begin
|
|
fconstructor,
|
|
{ intro x, induction x,
|
|
apply north,
|
|
apply south,
|
|
exact merid (f a)},
|
|
{ reflexivity}
|
|
end
|
|
|
|
definition psusp_functor_compose (g : Y →* Z) (f : X →* Y)
|
|
: psusp_functor (g ∘* f) ~* psusp_functor g ∘* psusp_functor f :=
|
|
begin
|
|
fconstructor,
|
|
{ intro a, induction a,
|
|
{ reflexivity},
|
|
{ reflexivity},
|
|
{ apply eq_pathover, apply hdeg_square,
|
|
rewrite [▸*,ap_compose' _ (psusp_functor f),↑psusp_functor,+elim_merid]}},
|
|
{ reflexivity}
|
|
end
|
|
|
|
-- adjunction from Coq-HoTT
|
|
|
|
definition loop_susp_unit [constructor] (X : pType) : X →* Ω(psusp X) :=
|
|
begin
|
|
fconstructor,
|
|
{ intro x, exact merid x ⬝ (merid pt)⁻¹},
|
|
{ apply con.right_inv},
|
|
end
|
|
|
|
definition loop_susp_unit_natural (f : X →* Y)
|
|
: loop_susp_unit Y ∘* f ~* ap1 (psusp_functor f) ∘* loop_susp_unit X :=
|
|
begin
|
|
induction X with X x, induction Y with Y y, induction f with f pf, esimp at *, induction pf,
|
|
fconstructor,
|
|
{ intro x', esimp [psusp_functor], symmetry,
|
|
exact
|
|
!idp_con ⬝
|
|
(!ap_con ⬝
|
|
whisker_left _ !ap_inv) ⬝
|
|
(!elim_merid ◾ (inverse2 !elim_merid))
|
|
},
|
|
{ rewrite [▸*,idp_con (con.right_inv _)],
|
|
apply inv_con_eq_of_eq_con,
|
|
refine _ ⬝ !con.assoc',
|
|
rewrite inverse2_right_inv,
|
|
refine _ ⬝ !con.assoc',
|
|
rewrite [ap_con_right_inv],
|
|
unfold psusp_functor,
|
|
xrewrite [idp_con_idp, -ap_compose (concat idp)]},
|
|
end
|
|
|
|
definition loop_susp_counit [constructor] (X : pType) : psusp (Ω X) →* X :=
|
|
begin
|
|
fconstructor,
|
|
{ intro x, induction x, exact pt, exact pt, exact a},
|
|
{ reflexivity},
|
|
end
|
|
|
|
definition loop_susp_counit_natural (f : X →* Y)
|
|
: f ∘* loop_susp_counit X ~* loop_susp_counit Y ∘* (psusp_functor (ap1 f)) :=
|
|
begin
|
|
induction X with X x, induction Y with Y y, induction f with f pf, esimp at *, induction pf,
|
|
fconstructor,
|
|
{ intro x', induction x' with p,
|
|
{ reflexivity},
|
|
{ reflexivity},
|
|
{ esimp, apply eq_pathover, apply hdeg_square,
|
|
xrewrite [ap_compose' f, ap_compose' (susp.elim (f x) (f x) (λ (a : f x = f x), a)),▸*],
|
|
xrewrite [+elim_merid,▸*,idp_con]}},
|
|
{ reflexivity}
|
|
end
|
|
|
|
definition loop_susp_counit_unit (X : pType)
|
|
: ap1 (loop_susp_counit X) ∘* loop_susp_unit (Ω X) ~* pid (Ω X) :=
|
|
begin
|
|
induction X with X x, fconstructor,
|
|
{ intro p, esimp,
|
|
refine !idp_con ⬝
|
|
(!ap_con ⬝
|
|
whisker_left _ !ap_inv) ⬝
|
|
(!elim_merid ◾ inverse2 !elim_merid)},
|
|
{ rewrite [▸*,inverse2_right_inv (elim_merid id idp)],
|
|
refine !con.assoc ⬝ _,
|
|
xrewrite [ap_con_right_inv (susp.elim x x (λa, a)) (merid idp),idp_con_idp,-ap_compose]}
|
|
end
|
|
|
|
definition loop_susp_unit_counit (X : pType)
|
|
: loop_susp_counit (psusp X) ∘* psusp_functor (loop_susp_unit X) ~* pid (psusp X) :=
|
|
begin
|
|
induction X with X x, fconstructor,
|
|
{ intro x', induction x',
|
|
{ reflexivity},
|
|
{ exact merid pt},
|
|
{ apply eq_pathover,
|
|
xrewrite [▸*, ap_id, ap_compose' (susp.elim north north (λa, a)), +elim_merid,▸*],
|
|
apply square_of_eq, exact !idp_con ⬝ !inv_con_cancel_right⁻¹}},
|
|
{ reflexivity}
|
|
end
|
|
|
|
definition susp_adjoint_loop (X Y : pType) : map₊ (pointed.mk' (susp X)) Y ≃ map₊ X (Ω Y) :=
|
|
begin
|
|
fapply equiv.MK,
|
|
{ intro f, exact ap1 f ∘* loop_susp_unit X},
|
|
{ intro g, exact loop_susp_counit Y ∘* psusp_functor g},
|
|
{ intro g, apply eq_of_phomotopy, esimp,
|
|
refine !pwhisker_right !ap1_compose ⬝* _,
|
|
refine !passoc ⬝* _,
|
|
refine !pwhisker_left !loop_susp_unit_natural⁻¹* ⬝* _,
|
|
refine !passoc⁻¹* ⬝* _,
|
|
refine !pwhisker_right !loop_susp_counit_unit ⬝* _,
|
|
apply pid_comp},
|
|
{ intro f, apply eq_of_phomotopy, esimp,
|
|
refine !pwhisker_left !psusp_functor_compose ⬝* _,
|
|
refine !passoc⁻¹* ⬝* _,
|
|
refine !pwhisker_right !loop_susp_counit_natural⁻¹* ⬝* _,
|
|
refine !passoc ⬝* _,
|
|
refine !pwhisker_left !loop_susp_unit_counit ⬝* _,
|
|
apply comp_pid},
|
|
end
|
|
|
|
definition susp_adjoint_loop_nat_right (f : psusp X →* Y) (g : Y →* Z)
|
|
: susp_adjoint_loop X Z (g ∘* f) ~* ap1 g ∘* susp_adjoint_loop X Y f :=
|
|
begin
|
|
esimp [susp_adjoint_loop],
|
|
refine _ ⬝* !passoc,
|
|
apply pwhisker_right,
|
|
apply ap1_compose
|
|
end
|
|
|
|
definition susp_adjoint_loop_nat_left (f : Y →* Ω Z) (g : X →* Y)
|
|
: (susp_adjoint_loop X Z)⁻¹ (f ∘* g) ~* (susp_adjoint_loop Y Z)⁻¹ f ∘* psusp_functor g :=
|
|
begin
|
|
esimp [susp_adjoint_loop],
|
|
refine _ ⬝* !passoc⁻¹*,
|
|
apply pwhisker_left,
|
|
apply psusp_functor_compose
|
|
end
|
|
|
|
end susp
|