lean2/library/data/hf.lean

599 lines
25 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
Hereditarily finite sets: finite sets whose elements are all hereditarily finite sets.
Remark: all definitions compute, however the performace is quite poor since
we implement this module using a bijection from (finset nat) to nat, and
this bijection is implemeted using the Ackermann coding.
-/
import data.nat data.finset.equiv data.list
open nat binary
open - [notation] finset
definition hf := nat
namespace hf
local attribute hf [reducible]
protected definition prio : num := num.succ std.priority.default
protected definition is_inhabited [instance] : inhabited hf :=
nat.is_inhabited
protected definition has_decidable_eq [reducible] [instance] : decidable_eq hf :=
nat.has_decidable_eq
definition of_finset (s : finset hf) : hf :=
@equiv.to_fun _ _ finset_nat_equiv_nat s
definition to_finset (h : hf) : finset hf :=
@equiv.inv _ _ finset_nat_equiv_nat h
definition to_nat (h : hf) : nat :=
h
definition of_nat (n : nat) : hf :=
n
lemma to_finset_of_finset (s : finset hf) : to_finset (of_finset s) = s :=
@equiv.left_inv _ _ finset_nat_equiv_nat s
lemma of_finset_to_finset (s : hf) : of_finset (to_finset s) = s :=
@equiv.right_inv _ _ finset_nat_equiv_nat s
lemma to_finset_inj {s₁ s₂ : hf} : to_finset s₁ = to_finset s₂ → s₁ = s₂ :=
λ h, function.injective_of_left_inverse of_finset_to_finset h
lemma of_finset_inj {s₁ s₂ : finset hf} : of_finset s₁ = of_finset s₂ → s₁ = s₂ :=
λ h, function.injective_of_left_inverse to_finset_of_finset h
/- empty -/
definition empty : hf :=
of_finset (finset.empty)
notation `∅` := hf.empty
/- insert -/
definition insert (a s : hf) : hf :=
of_finset (finset.insert a (to_finset s))
/- mem -/
definition mem (a : hf) (s : hf) : Prop :=
finset.mem a (to_finset s)
infix ∈ := mem
notation [priority finset.prio] a ∉ b := ¬ mem a b
lemma insert_lt_of_not_mem {a s : hf} : a ∉ s → s < insert a s :=
begin
unfold [insert, of_finset, equiv.to_fun, finset_nat_equiv_nat, mem, to_finset, equiv.inv],
intro h,
rewrite [finset.to_nat_insert h],
rewrite [to_nat_of_nat, -zero_add s at {1}],
apply add_lt_add_right,
apply pow_pos_of_pos _ dec_trivial
end
lemma insert_lt_insert_of_not_mem_of_not_mem_of_lt {a s₁ s₂ : hf}
: a ∉ s₁ → a ∉ s₂ → s₁ < s₂ → insert a s₁ < insert a s₂ :=
begin
unfold [insert, of_finset, equiv.to_fun, finset_nat_equiv_nat, mem, to_finset, equiv.inv],
intro h₁ h₂ h₃,
rewrite [finset.to_nat_insert h₁],
rewrite [finset.to_nat_insert h₂, *to_nat_of_nat],
apply add_lt_add_left h₃
end
open decidable
protected definition decidable_mem [instance] : ∀ a s, decidable (a ∈ s) :=
λ a s, finset.decidable_mem a (to_finset s)
lemma insert_le (a s : hf) : s ≤ insert a s :=
by_cases
(suppose a ∈ s, by rewrite [↑insert, insert_eq_of_mem this, of_finset_to_finset])
(suppose a ∉ s, le_of_lt (insert_lt_of_not_mem this))
lemma not_mem_empty (a : hf) : a ∉ ∅ :=
begin unfold [mem, empty], rewrite to_finset_of_finset, apply finset.not_mem_empty end
lemma mem_insert (a s : hf) : a ∈ insert a s :=
begin unfold [mem, insert], rewrite to_finset_of_finset, apply finset.mem_insert end
lemma mem_insert_of_mem {a s : hf} (b : hf) : a ∈ s → a ∈ insert b s :=
begin unfold [mem, insert], intros, rewrite to_finset_of_finset, apply finset.mem_insert_of_mem, assumption end
lemma eq_or_mem_of_mem_insert {a b s : hf} : a ∈ insert b s → a = b a ∈ s :=
begin unfold [mem, insert], rewrite to_finset_of_finset, intros, apply eq_or_mem_of_mem_insert, assumption end
theorem mem_of_mem_insert_of_ne {x a : hf} {s : hf} : x ∈ insert a s → x ≠ a → x ∈ s :=
begin unfold [mem, insert], rewrite to_finset_of_finset, intros, apply mem_of_mem_insert_of_ne, repeat assumption end
protected theorem ext {s₁ s₂ : hf} : (∀ a, a ∈ s₁ ↔ a ∈ s₂) → s₁ = s₂ :=
assume h,
assert to_finset s₁ = to_finset s₂, from finset.ext h,
assert of_finset (to_finset s₁) = of_finset (to_finset s₂), by rewrite this,
by rewrite [*of_finset_to_finset at this]; exact this
theorem insert_eq_of_mem {a : hf} {s : hf} : a ∈ s → insert a s = s :=
begin unfold mem, intro h, unfold [mem, insert], rewrite (finset.insert_eq_of_mem h), rewrite of_finset_to_finset end
protected theorem induction [recursor 4] {P : hf → Prop}
(h₁ : P empty) (h₂ : ∀ (a s : hf), a ∉ s → P s → P (insert a s)) (s : hf) : P s :=
assert P (of_finset (to_finset s)), from
@finset.induction _ _ _ h₁
(λ a s nain ih,
begin
unfold [mem, insert] at h₂,
rewrite -(to_finset_of_finset s) at nain,
have P (insert a (of_finset s)), by exact h₂ a (of_finset s) nain ih,
rewrite [↑insert at this, to_finset_of_finset at this],
exact this
end)
(to_finset s),
by rewrite of_finset_to_finset at this; exact this
lemma insert_le_insert_of_le {a s₁ s₂ : hf} : a ∈ s₁ a ∉ s₂ → s₁ ≤ s₂ → insert a s₁ ≤ insert a s₂ :=
suppose a ∈ s₁ a ∉ s₂,
suppose s₁ ≤ s₂,
by_cases
(suppose s₁ = s₂, by rewrite this)
(suppose s₁ ≠ s₂,
have s₁ < s₂, from lt_of_le_of_ne `s₁ ≤ s₂` `s₁ ≠ s₂`,
by_cases
(suppose a ∈ s₁, by_cases
(suppose a ∈ s₂, by rewrite [insert_eq_of_mem `a ∈ s₁`, insert_eq_of_mem `a ∈ s₂`]; assumption)
(suppose a ∉ s₂, by rewrite [insert_eq_of_mem `a ∈ s₁`]; exact le.trans `s₁ ≤ s₂` !insert_le))
(suppose a ∉ s₁, by_cases
(suppose a ∈ s₂, or.elim `a ∈ s₁ a ∉ s₂` (by contradiction) (by contradiction))
(suppose a ∉ s₂, le_of_lt (insert_lt_insert_of_not_mem_of_not_mem_of_lt `a ∉ s₁` `a ∉ s₂` `s₁ < s₂`))))
/- union -/
definition union (s₁ s₂ : hf) : hf :=
of_finset (finset.union (to_finset s₁) (to_finset s₂))
infix [priority hf.prio] := union
theorem mem_union_left {a : hf} {s₁ : hf} (s₂ : hf) : a ∈ s₁ → a ∈ s₁ s₂ :=
begin unfold mem, intro h, unfold union, rewrite to_finset_of_finset, apply finset.mem_union_left _ h end
theorem mem_union_l {a : hf} {s₁ : hf} {s₂ : hf} : a ∈ s₁ → a ∈ s₁ s₂ :=
mem_union_left s₂
theorem mem_union_right {a : hf} {s₂ : hf} (s₁ : hf) : a ∈ s₂ → a ∈ s₁ s₂ :=
begin unfold mem, intro h, unfold union, rewrite to_finset_of_finset, apply finset.mem_union_right _ h end
theorem mem_union_r {a : hf} {s₂ : hf} {s₁ : hf} : a ∈ s₂ → a ∈ s₁ s₂ :=
mem_union_right s₁
theorem mem_or_mem_of_mem_union {a : hf} {s₁ s₂ : hf} : a ∈ s₁ s₂ → a ∈ s₁ a ∈ s₂ :=
begin unfold [mem, union], rewrite to_finset_of_finset, intro h, apply finset.mem_or_mem_of_mem_union h end
theorem mem_union_iff {a : hf} (s₁ s₂ : hf) : a ∈ s₁ s₂ ↔ a ∈ s₁ a ∈ s₂ :=
iff.intro
(λ h, mem_or_mem_of_mem_union h)
(λ d, or.elim d
(λ i, mem_union_left _ i)
(λ i, mem_union_right _ i))
theorem mem_union_eq {a : hf} (s₁ s₂ : hf) : (a ∈ s₁ s₂) = (a ∈ s₁ a ∈ s₂) :=
propext !mem_union_iff
theorem union_comm (s₁ s₂ : hf) : s₁ s₂ = s₂ s₁ :=
hf.ext (λ a, by rewrite [*mem_union_eq]; exact or.comm)
theorem union_assoc (s₁ s₂ s₃ : hf) : (s₁ s₂) s₃ = s₁ (s₂ s₃) :=
hf.ext (λ a, by rewrite [*mem_union_eq]; exact or.assoc)
theorem union_left_comm (s₁ s₂ s₃ : hf) : s₁ (s₂ s₃) = s₂ (s₁ s₃) :=
!left_comm union_comm union_assoc s₁ s₂ s₃
theorem union_right_comm (s₁ s₂ s₃ : hf) : (s₁ s₂) s₃ = (s₁ s₃) s₂ :=
!right_comm union_comm union_assoc s₁ s₂ s₃
theorem union_self (s : hf) : s s = s :=
hf.ext (λ a, iff.intro
(λ ain, or.elim (mem_or_mem_of_mem_union ain) (λ i, i) (λ i, i))
(λ i, mem_union_left _ i))
theorem union_empty (s : hf) : s ∅ = s :=
hf.ext (λ a, iff.intro
(suppose a ∈ s ∅, or.elim (mem_or_mem_of_mem_union this) (λ i, i) (λ i, absurd i !not_mem_empty))
(suppose a ∈ s, mem_union_left _ this))
theorem empty_union (s : hf) : ∅ s = s :=
calc ∅ s = s ∅ : union_comm
... = s : union_empty
/- inter -/
definition inter (s₁ s₂ : hf) : hf :=
of_finset (finset.inter (to_finset s₁) (to_finset s₂))
infix [priority hf.prio] ∩ := inter
theorem mem_of_mem_inter_left {a : hf} {s₁ s₂ : hf} : a ∈ s₁ ∩ s₂ → a ∈ s₁ :=
begin unfold mem, unfold inter, rewrite to_finset_of_finset, intro h, apply finset.mem_of_mem_inter_left h end
theorem mem_of_mem_inter_right {a : hf} {s₁ s₂ : hf} : a ∈ s₁ ∩ s₂ → a ∈ s₂ :=
begin unfold mem, unfold inter, rewrite to_finset_of_finset, intro h, apply finset.mem_of_mem_inter_right h end
theorem mem_inter {a : hf} {s₁ s₂ : hf} : a ∈ s₁ → a ∈ s₂ → a ∈ s₁ ∩ s₂ :=
begin unfold mem, intro h₁ h₂, unfold inter, rewrite to_finset_of_finset, apply finset.mem_inter h₁ h₂ end
theorem mem_inter_iff (a : hf) (s₁ s₂ : hf) : a ∈ s₁ ∩ s₂ ↔ a ∈ s₁ ∧ a ∈ s₂ :=
iff.intro
(λ h, and.intro (mem_of_mem_inter_left h) (mem_of_mem_inter_right h))
(λ h, mem_inter (and.elim_left h) (and.elim_right h))
theorem mem_inter_eq (a : hf) (s₁ s₂ : hf) : (a ∈ s₁ ∩ s₂) = (a ∈ s₁ ∧ a ∈ s₂) :=
propext !mem_inter_iff
theorem inter_comm (s₁ s₂ : hf) : s₁ ∩ s₂ = s₂ ∩ s₁ :=
hf.ext (λ a, by rewrite [*mem_inter_eq]; exact and.comm)
theorem inter_assoc (s₁ s₂ s₃ : hf) : (s₁ ∩ s₂) ∩ s₃ = s₁ ∩ (s₂ ∩ s₃) :=
hf.ext (λ a, by rewrite [*mem_inter_eq]; exact and.assoc)
theorem inter_left_comm (s₁ s₂ s₃ : hf) : s₁ ∩ (s₂ ∩ s₃) = s₂ ∩ (s₁ ∩ s₃) :=
!left_comm inter_comm inter_assoc s₁ s₂ s₃
theorem inter_right_comm (s₁ s₂ s₃ : hf) : (s₁ ∩ s₂) ∩ s₃ = (s₁ ∩ s₃) ∩ s₂ :=
!right_comm inter_comm inter_assoc s₁ s₂ s₃
theorem inter_self (s : hf) : s ∩ s = s :=
hf.ext (λ a, iff.intro
(λ h, mem_of_mem_inter_right h)
(λ h, mem_inter h h))
theorem inter_empty (s : hf) : s ∩ ∅ = ∅ :=
hf.ext (λ a, iff.intro
(suppose a ∈ s ∩ ∅, absurd (mem_of_mem_inter_right this) !not_mem_empty)
(suppose a ∈ ∅, absurd this !not_mem_empty))
theorem empty_inter (s : hf) : ∅ ∩ s = ∅ :=
calc ∅ ∩ s = s ∩ ∅ : inter_comm
... = ∅ : inter_empty
/- card -/
definition card (s : hf) : nat :=
finset.card (to_finset s)
theorem card_empty : card ∅ = 0 :=
rfl
lemma ne_empty_of_card_eq_succ {s : hf} {n : nat} : card s = succ n → s ≠ ∅ :=
by intros; substvars; contradiction
/- erase -/
definition erase (a : hf) (s : hf) : hf :=
of_finset (erase a (to_finset s))
theorem not_mem_erase (a : hf) (s : hf) : a ∉ erase a s :=
begin unfold [mem, erase], rewrite to_finset_of_finset, apply finset.not_mem_erase end
theorem card_erase_of_mem {a : hf} {s : hf} : a ∈ s → card (erase a s) = pred (card s) :=
begin unfold mem, intro h, unfold [erase, card], rewrite to_finset_of_finset, apply finset.card_erase_of_mem h end
theorem card_erase_of_not_mem {a : hf} {s : hf} : a ∉ s → card (erase a s) = card s :=
begin unfold [mem], intro h, unfold [erase, card], rewrite to_finset_of_finset, apply finset.card_erase_of_not_mem h end
theorem erase_empty (a : hf) : erase a ∅ = ∅ :=
rfl
theorem ne_of_mem_erase {a b : hf} {s : hf} : b ∈ erase a s → b ≠ a :=
by intro h beqa; subst b; exact absurd h !not_mem_erase
theorem mem_of_mem_erase {a b : hf} {s : hf} : b ∈ erase a s → b ∈ s :=
begin unfold [erase, mem], rewrite to_finset_of_finset, intro h, apply mem_of_mem_erase h end
theorem mem_erase_of_ne_of_mem {a b : hf} {s : hf} : a ≠ b → a ∈ s → a ∈ erase b s :=
begin intro h₁, unfold mem, intro h₂, unfold erase, rewrite to_finset_of_finset, apply mem_erase_of_ne_of_mem h₁ h₂ end
theorem mem_erase_iff (a b : hf) (s : hf) : a ∈ erase b s ↔ a ∈ s ∧ a ≠ b :=
iff.intro
(assume H, and.intro (mem_of_mem_erase H) (ne_of_mem_erase H))
(assume H, mem_erase_of_ne_of_mem (and.right H) (and.left H))
theorem mem_erase_eq (a b : hf) (s : hf) : a ∈ erase b s = (a ∈ s ∧ a ≠ b) :=
propext !mem_erase_iff
theorem erase_insert {a : hf} {s : hf} : a ∉ s → erase a (insert a s) = s :=
begin
unfold [mem, erase, insert],
intro h, rewrite [to_finset_of_finset, finset.erase_insert h, of_finset_to_finset]
end
theorem insert_erase {a : hf} {s : hf} : a ∈ s → insert a (erase a s) = s :=
begin
unfold mem, intro h, unfold [insert, erase],
rewrite [to_finset_of_finset, finset.insert_erase h, of_finset_to_finset]
end
/- subset -/
definition subset (s₁ s₂ : hf) : Prop :=
finset.subset (to_finset s₁) (to_finset s₂)
infix [priority hf.prio] ⊆ := subset
theorem empty_subset (s : hf) : ∅ ⊆ s :=
begin unfold [empty, subset], rewrite to_finset_of_finset, apply finset.empty_subset (to_finset s) end
theorem subset.refl (s : hf) : s ⊆ s :=
begin unfold [subset], apply finset.subset.refl (to_finset s) end
theorem subset.trans {s₁ s₂ s₃ : hf} : s₁ ⊆ s₂ → s₂ ⊆ s₃ → s₁ ⊆ s₃ :=
begin unfold [subset], intro h₁ h₂, apply finset.subset.trans h₁ h₂ end
theorem mem_of_subset_of_mem {s₁ s₂ : hf} {a : hf} : s₁ ⊆ s₂ → a ∈ s₁ → a ∈ s₂ :=
begin unfold [subset, mem], intro h₁ h₂, apply finset.mem_of_subset_of_mem h₁ h₂ end
theorem subset.antisymm {s₁ s₂ : hf} : s₁ ⊆ s₂ → s₂ ⊆ s₁ → s₁ = s₂ :=
begin unfold [subset], intro h₁ h₂, apply to_finset_inj (finset.subset.antisymm h₁ h₂) end
-- alternative name
theorem eq_of_subset_of_subset {s₁ s₂ : hf} (H₁ : s₁ ⊆ s₂) (H₂ : s₂ ⊆ s₁) : s₁ = s₂ :=
subset.antisymm H₁ H₂
theorem subset_of_forall {s₁ s₂ : hf} : (∀x, x ∈ s₁ → x ∈ s₂) → s₁ ⊆ s₂ :=
begin unfold [mem, subset], intro h, apply finset.subset_of_forall h end
theorem subset_insert (s : hf) (a : hf) : s ⊆ insert a s :=
begin unfold [subset, insert], rewrite to_finset_of_finset, apply finset.subset_insert (to_finset s) end
theorem eq_empty_of_subset_empty {x : hf} (H : x ⊆ ∅) : x = ∅ :=
subset.antisymm H (empty_subset x)
theorem subset_empty_iff (x : hf) : x ⊆ ∅ ↔ x = ∅ :=
iff.intro eq_empty_of_subset_empty (take xeq, by rewrite xeq; apply subset.refl ∅)
theorem erase_subset_erase (a : hf) {s t : hf} : s ⊆ t → erase a s ⊆ erase a t :=
begin unfold [subset, erase], intro h, rewrite *to_finset_of_finset, apply finset.erase_subset_erase a h end
theorem erase_subset (a : hf) (s : hf) : erase a s ⊆ s :=
begin unfold [subset, erase], rewrite to_finset_of_finset, apply finset.erase_subset a (to_finset s) end
theorem erase_eq_of_not_mem {a : hf} {s : hf} : a ∉ s → erase a s = s :=
begin unfold [mem, erase], intro h, rewrite [finset.erase_eq_of_not_mem h, of_finset_to_finset] end
theorem erase_insert_subset (a : hf) (s : hf) : erase a (insert a s) ⊆ s :=
begin unfold [erase, insert, subset], rewrite [*to_finset_of_finset], apply finset.erase_insert_subset a (to_finset s) end
theorem erase_subset_of_subset_insert {a : hf} {s t : hf} (H : s ⊆ insert a t) : erase a s ⊆ t :=
hf.subset.trans (!hf.erase_subset_erase H) (erase_insert_subset a t)
theorem insert_erase_subset (a : hf) (s : hf) : s ⊆ insert a (erase a s) :=
decidable.by_cases
(assume ains : a ∈ s, by rewrite [!insert_erase ains]; apply subset.refl)
(assume nains : a ∉ s,
suffices s ⊆ insert a s, by rewrite [erase_eq_of_not_mem nains]; assumption,
subset_insert s a)
theorem insert_subset_insert (a : hf) {s t : hf} : s ⊆ t → insert a s ⊆ insert a t :=
begin
unfold [subset, insert], intro h,
rewrite *to_finset_of_finset, apply finset.insert_subset_insert a h
end
theorem subset_insert_of_erase_subset {s t : hf} {a : hf} (H : erase a s ⊆ t) : s ⊆ insert a t :=
subset.trans (insert_erase_subset a s) (!insert_subset_insert H)
theorem subset_insert_iff (s t : hf) (a : hf) : s ⊆ insert a t ↔ erase a s ⊆ t :=
iff.intro !erase_subset_of_subset_insert !subset_insert_of_erase_subset
theorem le_of_subset {s₁ s₂ : hf} : s₁ ⊆ s₂ → s₁ ≤ s₂ :=
begin
revert s₂, induction s₁ with a s₁ nain ih,
take s₂, suppose ∅ ⊆ s₂, !zero_le,
take s₂, suppose insert a s₁ ⊆ s₂,
assert a ∈ s₂, from mem_of_subset_of_mem this !mem_insert,
have a ∉ erase a s₂, from !not_mem_erase,
have s₁ ⊆ erase a s₂, from subset_of_forall
(take x xin, by_cases
(suppose x = a, by subst x; contradiction)
(suppose x ≠ a,
have x ∈ s₂, from mem_of_subset_of_mem `insert a s₁ ⊆ s₂` (mem_insert_of_mem _ `x ∈ s₁`),
mem_erase_of_ne_of_mem `x ≠ a` `x ∈ s₂`)),
have s₁ ≤ erase a s₂, from ih _ this,
assert insert a s₁ ≤ insert a (erase a s₂), from
insert_le_insert_of_le (or.inr `a ∉ erase a s₂`) this,
by rewrite [insert_erase `a ∈ s₂` at this]; exact this
end
/- image -/
definition image (f : hf → hf) (s : hf) : hf :=
of_finset (finset.image f (to_finset s))
theorem image_empty (f : hf → hf) : image f ∅ = ∅ :=
rfl
theorem mem_image_of_mem (f : hf → hf) {s : hf} {a : hf} : a ∈ s → f a ∈ image f s :=
begin unfold [mem, image], intro h, rewrite to_finset_of_finset, apply finset.mem_image_of_mem f h end
theorem mem_image {f : hf → hf} {s : hf} {a : hf} {b : hf} (H1 : a ∈ s) (H2 : f a = b) : b ∈ image f s :=
eq.subst H2 (mem_image_of_mem f H1)
theorem exists_of_mem_image {f : hf → hf} {s : hf} {b : hf} : b ∈ image f s → ∃a, a ∈ s ∧ f a = b :=
begin unfold [mem, image], rewrite to_finset_of_finset, intro h, apply finset.exists_of_mem_image h end
theorem mem_image_iff (f : hf → hf) {s : hf} {y : hf} : y ∈ image f s ↔ ∃x, x ∈ s ∧ f x = y :=
begin unfold [mem, image], rewrite to_finset_of_finset, apply finset.mem_image_iff end
theorem mem_image_eq (f : hf → hf) {s : hf} {y : hf} : y ∈ image f s = ∃x, x ∈ s ∧ f x = y :=
propext (mem_image_iff f)
theorem mem_image_of_mem_image_of_subset {f : hf → hf} {s t : hf} {y : hf} (H1 : y ∈ image f s) (H2 : s ⊆ t) : y ∈ image f t :=
obtain x `x ∈ s` `f x = y`, from exists_of_mem_image H1,
have x ∈ t, from mem_of_subset_of_mem H2 `x ∈ s`,
show y ∈ image f t, from mem_image `x ∈ t` `f x = y`
theorem image_insert (f : hf → hf) (s : hf) (a : hf) : image f (insert a s) = insert (f a) (image f s) :=
begin unfold [image, insert], rewrite [*to_finset_of_finset, finset.image_insert] end
open function
lemma image_comp {f : hf → hf} {g : hf → hf} {s : hf} : image (f∘g) s = image f (image g s) :=
begin unfold image, rewrite [*to_finset_of_finset, finset.image_comp] end
lemma image_subset {a b : hf} (f : hf → hf) : a ⊆ b → image f a ⊆ image f b :=
begin unfold [subset, image], intro h, rewrite *to_finset_of_finset, apply finset.image_subset f h end
theorem image_union (f : hf → hf) (s t : hf) : image f (s t) = image f s image f t :=
begin unfold [image, union], rewrite [*to_finset_of_finset, finset.image_union] end
/- powerset -/
definition powerset (s : hf) : hf :=
of_finset (finset.image of_finset (finset.powerset (to_finset s)))
prefix [priority hf.prio] `𝒫`:100 := powerset
theorem powerset_empty : 𝒫 ∅ = insert ∅ ∅ :=
rfl
theorem powerset_insert {a : hf} {s : hf} : a ∉ s → 𝒫 (insert a s) = 𝒫 s image (insert a) (𝒫 s) :=
begin unfold [mem, powerset, insert, union, image], rewrite [*to_finset_of_finset], intro h,
have (λ (x : finset hf), of_finset (finset.insert a x)) = (λ (x : finset hf), of_finset (finset.insert a (to_finset (of_finset x)))), from
funext (λ x, by rewrite to_finset_of_finset),
rewrite [finset.powerset_insert h, finset.image_union, -*finset.image_comp, ↑compose, this]
end
theorem mem_powerset_iff_subset (s : hf) : ∀ x : hf, x ∈ 𝒫 s ↔ x ⊆ s :=
begin
intro x, unfold [mem, powerset, subset], rewrite [to_finset_of_finset, finset.mem_image_eq], apply iff.intro,
suppose (∃ (w : finset hf), finset.mem w (finset.powerset (to_finset s)) ∧ of_finset w = x),
obtain w h₁ h₂, from this,
begin subst x, rewrite to_finset_of_finset, exact iff.mp !finset.mem_powerset_iff_subset h₁ end,
suppose finset.subset (to_finset x) (to_finset s),
assert finset.mem (to_finset x) (finset.powerset (to_finset s)), from iff.mpr !finset.mem_powerset_iff_subset this,
exists.intro (to_finset x) (and.intro this (of_finset_to_finset x))
end
theorem subset_of_mem_powerset {s t : hf} (H : s ∈ 𝒫 t) : s ⊆ t :=
iff.mp (mem_powerset_iff_subset t s) H
theorem mem_powerset_of_subset {s t : hf} (H : s ⊆ t) : s ∈ 𝒫 t :=
iff.mpr (mem_powerset_iff_subset t s) H
theorem empty_mem_powerset (s : hf) : ∅ ∈ 𝒫 s :=
mem_powerset_of_subset (empty_subset s)
/- hf as lists -/
open - [notation] list
definition of_list (s : list hf) : hf :=
@equiv.to_fun _ _ list_nat_equiv_nat s
definition to_list (h : hf) : list hf :=
@equiv.inv _ _ list_nat_equiv_nat h
lemma to_list_of_list (s : list hf) : to_list (of_list s) = s :=
@equiv.left_inv _ _ list_nat_equiv_nat s
lemma of_list_to_list (s : hf) : of_list (to_list s) = s :=
@equiv.right_inv _ _ list_nat_equiv_nat s
lemma to_list_inj {s₁ s₂ : hf} : to_list s₁ = to_list s₂ → s₁ = s₂ :=
λ h, function.injective_of_left_inverse of_list_to_list h
lemma of_list_inj {s₁ s₂ : list hf} : of_list s₁ = of_list s₂ → s₁ = s₂ :=
λ h, function.injective_of_left_inverse to_list_of_list h
definition nil : hf :=
of_list list.nil
lemma empty_eq_nil : ∅ = nil :=
rfl
definition cons (a l : hf) : hf :=
of_list (list.cons a (to_list l))
infixr :: := cons
lemma cons_ne_nil (a l : hf) : a::l ≠ nil :=
by contradiction
lemma head_eq_of_cons_eq {h₁ h₂ t₁ t₂ : hf} : (h₁::t₁) = (h₂::t₂) → h₁ = h₂ :=
begin unfold cons, intro h, apply list.head_eq_of_cons_eq (of_list_inj h) end
lemma tail_eq_of_cons_eq {h₁ h₂ t₁ t₂ : hf} : (h₁::t₁) = (h₂::t₂) → t₁ = t₂ :=
begin unfold cons, intro h, apply to_list_inj (list.tail_eq_of_cons_eq (of_list_inj h)) end
lemma cons_inj {a : hf} : injective (cons a) :=
take l₁ l₂, assume Pe, tail_eq_of_cons_eq Pe
/- append -/
definition append (l₁ l₂ : hf) : hf :=
of_list (list.append (to_list l₁) (to_list l₂))
notation l₁ ++ l₂ := append l₁ l₂
theorem append_nil_left [simp] (t : hf) : nil ++ t = t :=
begin unfold [nil, append], rewrite [to_list_of_list, list.append_nil_left, of_list_to_list] end
theorem append_cons [simp] (x s t : hf) : (x::s) ++ t = x::(s ++ t) :=
begin unfold [cons, append], rewrite [*to_list_of_list, list.append_cons] end
theorem append_nil_right [simp] (t : hf) : t ++ nil = t :=
begin unfold [nil, append], rewrite [to_list_of_list, list.append_nil_right, of_list_to_list] end
theorem append.assoc [simp] (s t u : hf) : s ++ t ++ u = s ++ (t ++ u) :=
begin unfold append, rewrite [*to_list_of_list, list.append.assoc] end
/- length -/
definition length (l : hf) : nat :=
list.length (to_list l)
theorem length_nil [simp] : length nil = 0 :=
begin unfold [length, nil] end
theorem length_cons [simp] (x t : hf) : length (x::t) = length t + 1 :=
begin unfold [length, cons], rewrite to_list_of_list end
theorem length_append [simp] (s t : hf) : length (s ++ t) = length s + length t :=
begin unfold [length, append], rewrite [to_list_of_list, list.length_append] end
theorem eq_nil_of_length_eq_zero {l : hf} : length l = 0 → l = nil :=
begin unfold [length, nil], intro h, rewrite [-list.eq_nil_of_length_eq_zero h, of_list_to_list] end
theorem ne_nil_of_length_eq_succ {l : hf} {n : nat} : length l = succ n → l ≠ nil :=
begin unfold [length, nil], intro h₁ h₂, subst l, rewrite to_list_of_list at h₁, contradiction end
/- head and tail -/
definition head (l : hf) : hf :=
list.head (to_list l)
theorem head_cons [simp] (a l : hf) : head (a::l) = a :=
begin unfold [head, cons], rewrite to_list_of_list end
private lemma to_list_ne_list_nil {s : hf} : s ≠ nil → to_list s ≠ list.nil :=
begin
unfold nil,
intro h,
suppose to_list s = list.nil,
by rewrite [-this at h, of_list_to_list at h]; exact absurd rfl h
end
theorem head_append [simp] (t : hf) {s : hf} : s ≠ nil → head (s ++ t) = head s :=
begin
unfold [nil, head, append], rewrite to_list_of_list,
suppose s ≠ of_list list.nil,
by rewrite [list.head_append _ (to_list_ne_list_nil this)]
end
definition tail (l : hf) : hf :=
of_list (list.tail (to_list l))
theorem tail_nil [simp] : tail nil = nil :=
begin unfold [tail, nil] end
theorem tail_cons [simp] (a l : hf) : tail (a::l) = l :=
begin unfold [tail, cons], rewrite [to_list_of_list, list.tail_cons, of_list_to_list] end
theorem cons_head_tail {l : hf} : l ≠ nil → (head l)::(tail l) = l :=
begin
unfold [nil, head, tail, cons],
suppose l ≠ of_list list.nil,
by rewrite [to_list_of_list, list.cons_head_tail (to_list_ne_list_nil this), of_list_to_list]
end
end hf