lean2/library/data/int/basic.lean
2015-11-08 14:04:58 -08:00

626 lines
25 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Jeremy Avigad
The integers, with addition, multiplication, and subtraction. The representation of the integers is
chosen to compute efficiently.
To faciliate proving things about these operations, we show that the integers are a quotient of
× with the usual equivalence relation, ≡, and functions
abstr : ×
repr : ×
satisfying:
abstr_repr (a : ) : abstr (repr a) = a
repr_abstr (p : × ) : repr (abstr p) ≡ p
abstr_eq (p q : × ) : p ≡ q → abstr p = abstr q
For example, to "lift" statements about add to statements about padd, we need to prove the
following:
repr_add (a b : ) : repr (a + b) = padd (repr a) (repr b)
padd_congr (p p' q q' : × ) (H1 : p ≡ p') (H2 : q ≡ q') : padd p q ≡ p' q'
-/
import data.nat.basic data.nat.order data.nat.sub data.prod
import algebra.relation algebra.binary algebra.ordered_ring
open eq.ops
open prod relation nat
open decidable binary
open algebra
/- the type of integers -/
inductive int : Type :=
| of_nat : nat → int
| neg_succ_of_nat : nat → int
notation `` := int
definition int.of_num [coercion] [reducible] [constructor] (n : num) : :=
int.of_nat (nat.of_num n)
namespace int
attribute int.of_nat [coercion]
notation `-[1+ ` n `]` := int.neg_succ_of_nat n -- for pretty-printing output
protected definition prio : num := num.pred nat.prio
definition int_has_zero [reducible] [instance] [priority int.prio] : has_zero int :=
has_zero.mk (of_nat 0)
definition int_has_one [reducible] [instance] [priority int.prio] : has_one int :=
has_one.mk (of_nat 1)
theorem of_nat_zero : of_nat (0:nat) = (0:int) :=
rfl
theorem of_nat_one : of_nat (1:nat) = (1:int) :=
rfl
/- definitions of basic functions -/
definition neg_of_nat :
| 0 := 0
| (succ m) := -[1+ m]
definition sub_nat_nat (m n : ) : :=
match (n - m : nat) with
| 0 := of_nat (m - n) -- m ≥ n
| (succ k) := -[1+ k] -- m < n, and n - m = succ k
end
protected definition neg (a : ) : :=
int.cases_on a neg_of_nat succ
protected definition add :
| (of_nat m) (of_nat n) := m + n
| (of_nat m) -[1+ n] := sub_nat_nat m (succ n)
| -[1+ m] (of_nat n) := sub_nat_nat n (succ m)
| -[1+ m] -[1+ n] := neg_of_nat (succ m + succ n)
protected definition mul :
| (of_nat m) (of_nat n) := m * n
| (of_nat m) -[1+ n] := neg_of_nat (m * succ n)
| -[1+ m] (of_nat n) := neg_of_nat (succ m * n)
| -[1+ m] -[1+ n] := succ m * succ n
/- notation -/
definition int_has_add [reducible] [instance] [priority int.prio] : has_add int := has_add.mk int.add
definition int_has_neg [reducible] [instance] [priority int.prio] : has_neg int := has_neg.mk int.neg
definition int_has_mul [reducible] [instance] [priority int.prio] : has_mul int := has_mul.mk int.mul
lemma mul_of_nat_of_nat (m n : nat) : of_nat m * of_nat n = of_nat (m * n) :=
rfl
lemma mul_of_nat_neg_succ_of_nat (m n : nat) : of_nat m * -[1+ n] = neg_of_nat (m * succ n) :=
rfl
lemma mul_neg_succ_of_nat_of_nat (m n : nat) : -[1+ m] * of_nat n = neg_of_nat (succ m * n) :=
rfl
lemma mul_neg_succ_of_nat_neg_succ_of_nat (m n : nat) : -[1+ m] * -[1+ n] = succ m * succ n :=
rfl
/- some basic functions and properties -/
theorem of_nat.inj {m n : } (H : of_nat m = of_nat n) : m = n :=
int.no_confusion H imp.id
theorem eq_of_of_nat_eq_of_nat {m n : } (H : of_nat m = of_nat n) : m = n :=
of_nat.inj H
theorem of_nat_eq_of_nat_iff (m n : ) : of_nat m = of_nat n ↔ m = n :=
iff.intro of_nat.inj !congr_arg
theorem neg_succ_of_nat.inj {m n : } (H : neg_succ_of_nat m = neg_succ_of_nat n) : m = n :=
int.no_confusion H imp.id
theorem neg_succ_of_nat_eq (n : ) : -[1+ n] = -(n + 1) := rfl
private definition has_decidable_eq₂ : Π (a b : ), decidable (a = b)
| (of_nat m) (of_nat n) := decidable_of_decidable_of_iff
(nat.has_decidable_eq m n) (iff.symm (of_nat_eq_of_nat_iff m n))
| (of_nat m) -[1+ n] := inr (by contradiction)
| -[1+ m] (of_nat n) := inr (by contradiction)
| -[1+ m] -[1+ n] := if H : m = n then
inl (congr_arg neg_succ_of_nat H) else inr (not.mto neg_succ_of_nat.inj H)
definition has_decidable_eq [instance] [priority int.prio] : decidable_eq := has_decidable_eq₂
theorem of_nat_add (n m : nat) : of_nat (n + m) = of_nat n + of_nat m := rfl
theorem of_nat_succ (n : ) : of_nat (succ n) = of_nat n + 1 := rfl
theorem of_nat_mul (n m : ) : of_nat (n * m) = of_nat n * of_nat m := rfl
theorem sub_nat_nat_of_ge {m n : } (H : m ≥ n) : sub_nat_nat m n = of_nat (m - n) :=
show sub_nat_nat m n = nat.cases_on 0 (m -[nat] n) _, from (sub_eq_zero_of_le H) ▸ rfl
section
local attribute sub_nat_nat [reducible]
theorem sub_nat_nat_of_lt {m n : } (H : m < n) : sub_nat_nat m n = -[1+ pred (n - m)] :=
have H1 : n - m = succ (pred (n - m)), from eq.symm (succ_pred_of_pos (sub_pos_of_lt H)),
show sub_nat_nat m n = nat.cases_on (succ (nat.pred (n - m))) (m -[nat] n) _, from H1 ▸ rfl
end
definition nat_abs (a : ) : := int.cases_on a function.id succ
theorem nat_abs_of_nat (n : ) : nat_abs n = n := rfl
theorem eq_zero_of_nat_abs_eq_zero : Π {a : }, nat_abs a = 0 → a = 0
| (of_nat m) H := congr_arg of_nat H
| -[1+ m'] H := absurd H !succ_ne_zero
theorem nat_abs_zero : nat_abs (0:int) = (0:nat) :=
rfl
theorem nat_abs_one : nat_abs (1:int) = (1:nat) :=
rfl
/- int is a quotient of ordered pairs of natural numbers -/
protected definition equiv (p q : × ) : Prop := pr1 p + pr2 q = pr2 p + pr1 q
local infix ≡ := int.equiv
protected theorem equiv.refl [refl] {p : × } : p ≡ p := !add.comm
protected theorem equiv.symm [symm] {p q : × } (H : p ≡ q) : q ≡ p :=
calc
pr1 q + pr2 p = pr2 p + pr1 q : by rewrite add.comm
... = pr1 p + pr2 q : H⁻¹
... = pr2 q + pr1 p : by rewrite add.comm
protected theorem equiv.trans [trans] {p q r : × } (H1 : p ≡ q) (H2 : q ≡ r) : p ≡ r :=
add.cancel_right (calc
pr1 p + pr2 r + pr2 q = pr1 p + pr2 q + pr2 r : by rewrite add.right_comm
... = pr2 p + pr1 q + pr2 r : {H1}
... = pr2 p + (pr1 q + pr2 r) : by rewrite add.assoc
... = pr2 p + (pr2 q + pr1 r) : {H2}
... = pr2 p + pr2 q + pr1 r : by rewrite add.assoc
... = pr2 p + pr1 r + pr2 q : by rewrite add.right_comm)
protected theorem equiv_equiv : is_equivalence int.equiv :=
is_equivalence.mk @equiv.refl @equiv.symm @equiv.trans
protected theorem equiv_cases {p q : × } (H : p ≡ q) :
(pr1 p ≥ pr2 p ∧ pr1 q ≥ pr2 q) (pr1 p < pr2 p ∧ pr1 q < pr2 q) :=
or.elim (@le_or_gt _ _ (pr2 p) (pr1 p))
(suppose pr1 p ≥ pr2 p,
have pr2 p + pr1 q ≥ pr2 p + pr2 q, from H ▸ add_le_add_right this (pr2 q),
or.inl (and.intro `pr1 p ≥ pr2 p` (le_of_add_le_add_left this)))
(suppose H₁ : pr1 p < pr2 p,
have pr2 p + pr1 q < pr2 p + pr2 q, from H ▸ add_lt_add_right H₁ (pr2 q),
or.inr (and.intro H₁ (lt_of_add_lt_add_left this)))
protected theorem equiv_of_eq {p q : × } (H : p = q) : p ≡ q := H ▸ equiv.refl
/- the representation and abstraction functions -/
definition abstr (a : × ) : := sub_nat_nat (pr1 a) (pr2 a)
theorem abstr_of_ge {p : × } (H : pr1 p ≥ pr2 p) : abstr p = of_nat (pr1 p - pr2 p) :=
sub_nat_nat_of_ge H
theorem abstr_of_lt {p : × } (H : pr1 p < pr2 p) :
abstr p = -[1+ pred (pr2 p - pr1 p)] :=
sub_nat_nat_of_lt H
definition repr : ×
| (of_nat m) := (m, 0)
| -[1+ m] := (0, succ m)
theorem abstr_repr : Π (a : ), abstr (repr a) = a
| (of_nat m) := (sub_nat_nat_of_ge (zero_le m))
| -[1+ m] := rfl
theorem repr_sub_nat_nat (m n : ) : repr (sub_nat_nat m n) ≡ (m, n) :=
lt_ge_by_cases
(take H : m < n,
have H1 : repr (sub_nat_nat m n) = (0, n - m), by
rewrite [sub_nat_nat_of_lt H, -(succ_pred_of_pos (sub_pos_of_lt H))],
H1⁻¹ ▸ (!zero_add ⬝ (sub_add_cancel (le_of_lt H))⁻¹))
(take H : m ≥ n,
have H1 : repr (sub_nat_nat m n) = (m - n, 0), from sub_nat_nat_of_ge H ▸ rfl,
H1⁻¹ ▸ ((sub_add_cancel H) ⬝ !zero_add⁻¹))
theorem repr_abstr (p : × ) : repr (abstr p) ≡ p :=
!prod.eta ▸ !repr_sub_nat_nat
theorem abstr_eq {p q : × } (Hequiv : p ≡ q) : abstr p = abstr q :=
or.elim (int.equiv_cases Hequiv)
(and.rec (assume (Hp : pr1 p ≥ pr2 p) (Hq : pr1 q ≥ pr2 q),
have H : pr1 p - pr2 p = pr1 q - pr2 q, from
calc pr1 p - pr2 p
= pr1 p + pr2 q - pr2 q - pr2 p : by rewrite add_sub_cancel
... = pr2 p + pr1 q - pr2 q - pr2 p : Hequiv
... = pr2 p + (pr1 q - pr2 q) - pr2 p : add_sub_assoc Hq
... = pr1 q - pr2 q + pr2 p - pr2 p : by rewrite add.comm
... = pr1 q - pr2 q : by rewrite add_sub_cancel,
abstr_of_ge Hp ⬝ (H ▸ rfl) ⬝ (abstr_of_ge Hq)⁻¹))
(and.rec (assume (Hp : pr1 p < pr2 p) (Hq : pr1 q < pr2 q),
have H : pr2 p - pr1 p = pr2 q - pr1 q, from
calc pr2 p - pr1 p
= pr2 p + pr1 q - pr1 q - pr1 p : by rewrite add_sub_cancel
... = pr1 p + pr2 q - pr1 q - pr1 p : Hequiv
... = pr1 p + (pr2 q - pr1 q) - pr1 p : add_sub_assoc (le_of_lt Hq)
... = pr2 q - pr1 q + pr1 p - pr1 p : by rewrite add.comm
... = pr2 q - pr1 q : by rewrite add_sub_cancel,
abstr_of_lt Hp ⬝ (H ▸ rfl) ⬝ (abstr_of_lt Hq)⁻¹))
theorem equiv_iff (p q : × ) : (p ≡ q) ↔ (abstr p = abstr q) :=
iff.intro abstr_eq (assume H, equiv.trans (H ▸ equiv.symm (repr_abstr p)) (repr_abstr q))
theorem equiv_iff3 (p q : × ) : (p ≡ q) ↔ ((p ≡ p) ∧ (q ≡ q) ∧ (abstr p = abstr q)) :=
iff.trans !equiv_iff (iff.symm
(iff.trans (and_iff_right !equiv.refl) (and_iff_right !equiv.refl)))
theorem eq_abstr_of_equiv_repr {a : } {p : × } (Hequiv : repr a ≡ p) : a = abstr p :=
!abstr_repr⁻¹ ⬝ abstr_eq Hequiv
theorem eq_of_repr_equiv_repr {a b : } (H : repr a ≡ repr b) : a = b :=
eq_abstr_of_equiv_repr H ⬝ !abstr_repr
section
local attribute abstr [reducible]
local attribute dist [reducible]
theorem nat_abs_abstr : Π (p : × ), nat_abs (abstr p) = dist (pr1 p) (pr2 p)
| (m, n) := lt_ge_by_cases
(assume H : m < n,
calc
nat_abs (abstr (m, n)) = nat_abs (-[1+ pred (n - m)]) : int.abstr_of_lt H
... = n - m : succ_pred_of_pos (sub_pos_of_lt H)
... = dist m n : dist_eq_sub_of_le (le_of_lt H))
(assume H : m ≥ n, (abstr_of_ge H)⁻¹ ▸ (dist_eq_sub_of_ge H)⁻¹)
end
theorem cases_of_nat_succ (a : ) : (∃n : , a = of_nat n) (∃n : , a = - (of_nat (succ n))) :=
int.cases_on a (take m, or.inl (exists.intro _ rfl)) (take m, or.inr (exists.intro _ rfl))
theorem cases_of_nat (a : ) : (∃n : , a = of_nat n) (∃n : , a = - of_nat n) :=
or.imp_right (Exists.rec (take n, (exists.intro _))) !cases_of_nat_succ
theorem by_cases_of_nat {P : → Prop} (a : )
(H1 : ∀n : , P (of_nat n)) (H2 : ∀n : , P (- of_nat n)) :
P a :=
or.elim (cases_of_nat a)
(assume H, obtain (n : ) (H3 : a = n), from H, H3⁻¹ ▸ H1 n)
(assume H, obtain (n : ) (H3 : a = -n), from H, H3⁻¹ ▸ H2 n)
theorem by_cases_of_nat_succ {P : → Prop} (a : )
(H1 : ∀n : , P (of_nat n)) (H2 : ∀n : , P (- of_nat (succ n))) :
P a :=
or.elim (cases_of_nat_succ a)
(assume H, obtain (n : ) (H3 : a = n), from H, H3⁻¹ ▸ H1 n)
(assume H, obtain (n : ) (H3 : a = -(succ n)), from H, H3⁻¹ ▸ H2 n)
/-
int is a ring
-/
/- addition -/
definition padd (p q : × ) : × := (pr1 p + pr1 q, pr2 p + pr2 q)
theorem repr_add : Π (a b : ), repr (add a b) ≡ padd (repr a) (repr b)
| (of_nat m) (of_nat n) := !equiv.refl
| (of_nat m) -[1+ n] :=
begin
change repr (sub_nat_nat m (succ n)) ≡ (m + 0, 0 + succ n),
rewrite [zero_add, add_zero],
apply repr_sub_nat_nat
end
| -[1+ m] (of_nat n) :=
begin
change repr (-[1+ m] + n) ≡ (0 + n, succ m + 0),
rewrite [zero_add, add_zero],
apply repr_sub_nat_nat
end
| -[1+ m] -[1+ n] := !repr_sub_nat_nat
theorem padd_congr {p p' q q' : × } (Ha : p ≡ p') (Hb : q ≡ q') : padd p q ≡ padd p' q' :=
calc pr1 p + pr1 q + (pr2 p' + pr2 q')
= pr1 p + pr2 p' + (pr1 q + pr2 q') : add.comm4
... = pr2 p + pr1 p' + (pr1 q + pr2 q') : {Ha}
... = pr2 p + pr1 p' + (pr2 q + pr1 q') : {Hb}
... = pr2 p + pr2 q + (pr1 p' + pr1 q') : add.comm4
theorem padd_comm (p q : × ) : padd p q = padd q p :=
calc (pr1 p + pr1 q, pr2 p + pr2 q)
= (pr1 q + pr1 p, pr2 p + pr2 q) : by rewrite add.comm
... = (pr1 q + pr1 p, pr2 q + pr2 p) : by rewrite (add.comm (pr2 p) (pr2 q))
theorem padd_assoc (p q r : × ) : padd (padd p q) r = padd p (padd q r) :=
calc (pr1 p + pr1 q + pr1 r, pr2 p + pr2 q + pr2 r)
= (pr1 p + (pr1 q + pr1 r), pr2 p + pr2 q + pr2 r) : by rewrite add.assoc
... = (pr1 p + (pr1 q + pr1 r), pr2 p + (pr2 q + pr2 r)) : by rewrite add.assoc
theorem add.comm (a b : ) : a + b = b + a :=
eq_of_repr_equiv_repr (equiv.trans !repr_add
(equiv.symm (!padd_comm ▸ !repr_add)))
theorem add.assoc (a b c : ) : a + b + c = a + (b + c) :=
eq_of_repr_equiv_repr (calc
repr (a + b + c)
≡ padd (repr (a + b)) (repr c) : repr_add
... ≡ padd (padd (repr a) (repr b)) (repr c) : padd_congr !repr_add !equiv.refl
... = padd (repr a) (padd (repr b) (repr c)) : !padd_assoc
... ≡ padd (repr a) (repr (b + c)) : padd_congr !equiv.refl !repr_add
... ≡ repr (a + (b + c)) : repr_add)
theorem add_zero : Π (a : ), a + 0 = a := int.rec (λm, rfl) (λm, rfl)
theorem zero_add (a : ) : 0 + a = a := !add.comm ▸ !add_zero
/- negation -/
definition pneg (p : × ) : × := (pr2 p, pr1 p)
-- note: this is =, not just ≡
theorem repr_neg : Π (a : ), repr (- a) = pneg (repr a)
| 0 := rfl
| (succ m) := rfl
| -[1+ m] := rfl
theorem pneg_congr {p p' : × } (H : p ≡ p') : pneg p ≡ pneg p' := eq.symm H
theorem pneg_pneg (p : × ) : pneg (pneg p) = p := !prod.eta
theorem nat_abs_neg (a : ) : nat_abs (-a) = nat_abs a :=
calc
nat_abs (-a) = nat_abs (abstr (repr (-a))) : abstr_repr
... = nat_abs (abstr (pneg (repr a))) : repr_neg
... = dist (pr1 (pneg (repr a))) (pr2 (pneg (repr a))) : nat_abs_abstr
... = dist (pr2 (pneg (repr a))) (pr1 (pneg (repr a))) : dist.comm
... = nat_abs (abstr (repr a)) : nat_abs_abstr
... = nat_abs a : abstr_repr
theorem padd_pneg (p : × ) : padd p (pneg p) ≡ (0, 0) :=
show pr1 p + pr2 p + 0 = pr2 p + pr1 p + 0, from !nat.add_comm ▸ rfl
theorem padd_padd_pneg (p q : × ) : padd (padd p q) (pneg q) ≡ p :=
calc pr1 p + pr1 q + pr2 q + pr2 p
= pr1 p + (pr1 q + pr2 q) + pr2 p : algebra.add.assoc
... = pr1 p + (pr1 q + pr2 q + pr2 p) : algebra.add.assoc
... = pr1 p + (pr2 q + pr1 q + pr2 p) : algebra.add.comm
... = pr1 p + (pr2 q + pr2 p + pr1 q) : algebra.add.right_comm
... = pr1 p + (pr2 p + pr2 q + pr1 q) : algebra.add.comm
... = pr2 p + pr2 q + pr1 q + pr1 p : algebra.add.comm
theorem add.left_inv (a : ) : -a + a = 0 :=
have H : repr (-a + a) ≡ repr 0, from
calc
repr (-a + a) ≡ padd (repr (neg a)) (repr a) : repr_add
... = padd (pneg (repr a)) (repr a) : repr_neg
... ≡ repr 0 : padd_pneg,
eq_of_repr_equiv_repr H
/- nat abs -/
definition pabs (p : × ) : := dist (pr1 p) (pr2 p)
theorem pabs_congr {p q : × } (H : p ≡ q) : pabs p = pabs q :=
calc
pabs p = nat_abs (abstr p) : nat_abs_abstr
... = nat_abs (abstr q) : abstr_eq H
... = pabs q : nat_abs_abstr
theorem nat_abs_eq_pabs_repr (a : ) : nat_abs a = pabs (repr a) :=
calc
nat_abs a = nat_abs (abstr (repr a)) : abstr_repr
... = pabs (repr a) : nat_abs_abstr
theorem nat_abs_add_le (a b : ) : nat_abs (a + b) ≤ nat_abs a + nat_abs b :=
calc
nat_abs (a + b) = pabs (repr (a + b)) : nat_abs_eq_pabs_repr
... = pabs (padd (repr a) (repr b)) : pabs_congr !repr_add
... ≤ pabs (repr a) + pabs (repr b) : dist_add_add_le_add_dist_dist
... = pabs (repr a) + nat_abs b : nat_abs_eq_pabs_repr
... = nat_abs a + nat_abs b : nat_abs_eq_pabs_repr
theorem nat_abs_neg_of_nat (n : nat) : nat_abs (neg_of_nat n) = n :=
begin cases n, reflexivity, reflexivity end
section
local attribute nat_abs [reducible]
theorem nat_abs_mul : Π (a b : ), nat_abs (a * b) = (nat_abs a) * (nat_abs b)
| (of_nat m) (of_nat n) := rfl
| (of_nat m) -[1+ n] := by rewrite [mul_of_nat_neg_succ_of_nat, nat_abs_neg_of_nat]
| -[1+ m] (of_nat n) := by rewrite [mul_neg_succ_of_nat_of_nat, nat_abs_neg_of_nat]
| -[1+ m] -[1+ n] := rfl
end
/- multiplication -/
definition pmul (p q : × ) : × :=
(pr1 p * pr1 q + pr2 p * pr2 q, pr1 p * pr2 q + pr2 p * pr1 q)
theorem repr_neg_of_nat (m : ) : repr (neg_of_nat m) = (0, m) :=
nat.cases_on m rfl (take m', rfl)
-- note: we have =, not just ≡
theorem repr_mul : Π (a b : ), repr (a * b) = pmul (repr a) (repr b)
| (of_nat m) (of_nat n) := calc
(m * n + 0 * 0, m * 0 + 0) = (m * n + 0 * 0, m * 0 + 0 * n) : by rewrite *zero_mul
| (of_nat m) -[1+ n] := calc
repr ((m : int) * -[1+ n]) = (m * 0 + 0, m * succ n + 0 * 0) : repr_neg_of_nat
... = (m * 0 + 0 * succ n, m * succ n + 0 * 0) : by rewrite *zero_mul
| -[1+ m] (of_nat n) := calc
repr (-[1+ m] * (n:int)) = (0 + succ m * 0, succ m * n) : repr_neg_of_nat
... = (0 + succ m * 0, 0 + succ m * n) : nat.zero_add
... = (0 * n + succ m * 0, 0 + succ m * n) : by rewrite zero_mul
| -[1+ m] -[1+ n] := calc
(succ m * succ n, 0) = (succ m * succ n, 0 * succ n) : by rewrite zero_mul
... = (0 + succ m * succ n, 0 * succ n) : nat.zero_add
theorem equiv_mul_prep {xa ya xb yb xn yn xm ym : }
(H1 : xa + yb = ya + xb) (H2 : xn + ym = yn + xm)
: xa*xn+ya*yn+(xb*ym+yb*xm) = xa*yn+ya*xn+(xb*xm+yb*ym) :=
nat.add.cancel_right (calc
xa*xn+ya*yn + (xb*ym+yb*xm) + (yb*xn+xb*yn + (xb*xn+yb*yn))
= xa*xn+ya*yn + (yb*xn+xb*yn) + (xb*ym+yb*xm + (xb*xn+yb*yn)) : by rewrite add.comm4
... = xa*xn+ya*yn + (yb*xn+xb*yn) + (xb*xn+yb*yn + (xb*ym+yb*xm)) : by rewrite {xb*ym+yb*xm +_}nat.add_comm
... = xa*xn+yb*xn + (ya*yn+xb*yn) + (xb*xn+xb*ym + (yb*yn+yb*xm)) : by exact !congr_arg2 !add.comm4 !add.comm4
... = ya*xn+xb*xn + (xa*yn+yb*yn) + (xb*yn+xb*xm + (yb*xn+yb*ym)) : by rewrite[-+left_distrib,-+right_distrib]; exact H1 ▸ H2 ▸ rfl
... = ya*xn+xa*yn + (xb*xn+yb*yn) + (xb*yn+yb*xn + (xb*xm+yb*ym)) : by exact !congr_arg2 !add.comm4 !add.comm4
... = xa*yn+ya*xn + (xb*xn+yb*yn) + (xb*yn+yb*xn + (xb*xm+yb*ym)) : by rewrite {xa*yn + _}nat.add_comm
... = xa*yn+ya*xn + (xb*xn+yb*yn) + (yb*xn+xb*yn + (xb*xm+yb*ym)) : by rewrite {xb*yn + _}nat.add_comm
... = xa*yn+ya*xn + (yb*xn+xb*yn) + (xb*xn+yb*yn + (xb*xm+yb*ym)) : by rewrite (!add.comm4)
... = xa*yn+ya*xn + (yb*xn+xb*yn) + (xb*xm+yb*ym + (xb*xn+yb*yn)) : by rewrite {xb*xn+yb*yn + _}nat.add_comm
... = xa*yn+ya*xn + (xb*xm+yb*ym) + (yb*xn+xb*yn + (xb*xn+yb*yn)) : by rewrite add.comm4)
theorem pmul_congr {p p' q q' : × } : p ≡ p' → q ≡ q' → pmul p q ≡ pmul p' q' := equiv_mul_prep
theorem pmul_comm (p q : × ) : pmul p q = pmul q p :=
show (_,_) = (_,_),
begin
congruence,
{ congruence, repeat rewrite mul.comm },
{ rewrite algebra.add.comm, congruence, repeat rewrite mul.comm }
end
theorem mul.comm (a b : ) : a * b = b * a :=
eq_of_repr_equiv_repr
((calc
repr (a * b) = pmul (repr a) (repr b) : repr_mul
... = pmul (repr b) (repr a) : pmul_comm
... = repr (b * a) : repr_mul) ▸ !equiv.refl)
private theorem pmul_assoc_prep {p1 p2 q1 q2 r1 r2 : } :
((p1*q1+p2*q2)*r1+(p1*q2+p2*q1)*r2, (p1*q1+p2*q2)*r2+(p1*q2+p2*q1)*r1) =
(p1*(q1*r1+q2*r2)+p2*(q1*r2+q2*r1), p1*(q1*r2+q2*r1)+p2*(q1*r1+q2*r2)) :=
begin
rewrite[+left_distrib,+right_distrib,*algebra.mul.assoc],
exact (congr_arg2 pair (!add.comm4 ⬝ (!congr_arg !nat.add_comm))
(!add.comm4 ⬝ (!congr_arg !nat.add_comm)))
end
theorem pmul_assoc (p q r: × ) : pmul (pmul p q) r = pmul p (pmul q r) := pmul_assoc_prep
theorem mul.assoc (a b c : ) : (a * b) * c = a * (b * c) :=
eq_of_repr_equiv_repr
((calc
repr (a * b * c) = pmul (repr (a * b)) (repr c) : repr_mul
... = pmul (pmul (repr a) (repr b)) (repr c) : repr_mul
... = pmul (repr a) (pmul (repr b) (repr c)) : pmul_assoc
... = pmul (repr a) (repr (b * c)) : repr_mul
... = repr (a * (b * c)) : repr_mul) ▸ !equiv.refl)
theorem mul_one : Π (a : ), a * 1 = a
| (of_nat m) := !zero_add -- zero_add happens to be def. = to this thm
| -[1+ m] := !nat.zero_add ▸ rfl
theorem one_mul (a : ) : 1 * a = a :=
mul.comm a 1 ▸ mul_one a
private theorem mul_distrib_prep {a1 a2 b1 b2 c1 c2 : } :
((a1+b1)*c1+(a2+b2)*c2, (a1+b1)*c2+(a2+b2)*c1) =
(a1*c1+a2*c2+(b1*c1+b2*c2), a1*c2+a2*c1+(b1*c2+b2*c1)) :=
begin
rewrite +right_distrib, congruence,
{rewrite add.comm4},
{rewrite add.comm4}
end
theorem mul.right_distrib (a b c : ) : (a + b) * c = a * c + b * c :=
eq_of_repr_equiv_repr
(calc
repr ((a + b) * c) = pmul (repr (a + b)) (repr c) : repr_mul
... ≡ pmul (padd (repr a) (repr b)) (repr c) : pmul_congr !repr_add equiv.refl
... = padd (pmul (repr a) (repr c)) (pmul (repr b) (repr c)) : mul_distrib_prep
... = padd (repr (a * c)) (pmul (repr b) (repr c)) : repr_mul
... = padd (repr (a * c)) (repr (b * c)) : repr_mul
... ≡ repr (a * c + b * c) : repr_add)
theorem mul.left_distrib (a b c : ) : a * (b + c) = a * b + a * c :=
calc
a * (b + c) = (b + c) * a : mul.comm
... = b * a + c * a : mul.right_distrib
... = a * b + c * a : mul.comm
... = a * b + a * c : mul.comm
theorem zero_ne_one : (0 : int) ≠ 1 :=
assume H : 0 = 1, !succ_ne_zero (of_nat.inj H)⁻¹
theorem eq_zero_or_eq_zero_of_mul_eq_zero {a b : } (H : a * b = 0) : a = 0 b = 0 :=
or.imp eq_zero_of_nat_abs_eq_zero eq_zero_of_nat_abs_eq_zero
(eq_zero_or_eq_zero_of_mul_eq_zero (by rewrite [-nat_abs_mul, H]))
protected definition integral_domain [reducible] [trans_instance] : algebra.integral_domain int :=
⦃algebra.integral_domain,
add := int.add,
add_assoc := add.assoc,
zero := 0,
zero_add := zero_add,
add_zero := add_zero,
neg := int.neg,
add_left_inv := add.left_inv,
add_comm := add.comm,
mul := int.mul,
mul_assoc := mul.assoc,
one := 1,
one_mul := one_mul,
mul_one := mul_one,
left_distrib := mul.left_distrib,
right_distrib := mul.right_distrib,
mul_comm := mul.comm,
zero_ne_one := zero_ne_one,
eq_zero_or_eq_zero_of_mul_eq_zero := @eq_zero_or_eq_zero_of_mul_eq_zero⦄
definition int_has_sub [reducible] [instance] [priority int.prio] : has_sub int :=
has_sub.mk has_sub.sub
definition int_has_dvd [reducible] [instance] [priority int.prio] : has_dvd int :=
has_dvd.mk has_dvd.dvd
/- additional properties -/
theorem of_nat_sub {m n : } (H : m ≥ n) : of_nat (m - n) = of_nat m - of_nat n :=
assert m - n + n = m, from nat.sub_add_cancel H,
begin
symmetry,
apply algebra.sub_eq_of_eq_add,
rewrite [-of_nat_add, this]
end
theorem neg_succ_of_nat_eq' (m : ) : -[1+ m] = -m - 1 :=
by rewrite [neg_succ_of_nat_eq, neg_add]
definition succ (a : ) := a + (succ zero)
definition pred (a : ) := a - (succ zero)
theorem pred_succ (a : ) : pred (succ a) = a := !sub_add_cancel
theorem succ_pred (a : ) : succ (pred a) = a := !add_sub_cancel
theorem neg_succ (a : ) : -succ a = pred (-a) :=
by rewrite [↑succ,neg_add]
theorem succ_neg_succ (a : ) : succ (-succ a) = -a :=
by rewrite [neg_succ,succ_pred]
theorem neg_pred (a : ) : -pred a = succ (-a) :=
by rewrite [↑pred,neg_sub,sub_eq_add_neg,add.comm]
theorem pred_neg_pred (a : ) : pred (-pred a) = -a :=
by rewrite [neg_pred,pred_succ]
theorem pred_nat_succ (n : ) : pred (nat.succ n) = n := pred_succ n
theorem neg_nat_succ (n : ) : -nat.succ n = pred (-n) := !neg_succ
theorem succ_neg_nat_succ (n : ) : succ (-nat.succ n) = -n := !succ_neg_succ
definition rec_nat_on [unfold 2] {P : → Type} (z : ) (H0 : P 0)
(Hsucc : Π⦃n : ℕ⦄, P n → P (succ n)) (Hpred : Π⦃n : ℕ⦄, P (-n) → P (-nat.succ n)) : P z :=
int.rec (nat.rec H0 Hsucc) (λn, nat.rec H0 Hpred (nat.succ n)) z
--the only computation rule of rec_nat_on which is not definitional
theorem rec_nat_on_neg {P : → Type} (n : nat) (H0 : P zero)
(Hsucc : Π⦃n : nat⦄, P n → P (succ n)) (Hpred : Π⦃n : nat⦄, P (-n) → P (-nat.succ n))
: rec_nat_on (-nat.succ n) H0 Hsucc Hpred = Hpred (rec_nat_on (-n) H0 Hsucc Hpred) :=
nat.rec rfl (λn H, rfl) n
end int