lean2/hott/algebra/group.hlean

740 lines
26 KiB
Text

/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Leonardo de Moura
Various multiplicative and additive structures. Partially modeled on Isabelle's library.
-/
import algebra.binary algebra.priority
open eq eq.ops -- note: ⁻¹ will be overloaded
open binary algebra is_trunc
set_option class.force_new true
variable {A : Type}
/- semigroup -/
namespace algebra
structure semigroup [class] (A : Type) extends has_mul A :=
(is_set_carrier : is_set A)
(mul_assoc : Πa b c, mul (mul a b) c = mul a (mul b c))
attribute semigroup.is_set_carrier [instance] [priority 950]
definition mul.assoc [s : semigroup A] (a b c : A) : a * b * c = a * (b * c) :=
!semigroup.mul_assoc
structure comm_semigroup [class] (A : Type) extends semigroup A :=
(mul_comm : Πa b, mul a b = mul b a)
definition mul.comm [s : comm_semigroup A] (a b : A) : a * b = b * a :=
!comm_semigroup.mul_comm
theorem mul.left_comm [s : comm_semigroup A] (a b c : A) : a * (b * c) = b * (a * c) :=
binary.left_comm (@mul.comm A _) (@mul.assoc A _) a b c
theorem mul.right_comm [s : comm_semigroup A] (a b c : A) : (a * b) * c = (a * c) * b :=
binary.right_comm (@mul.comm A _) (@mul.assoc A _) a b c
structure left_cancel_semigroup [class] (A : Type) extends semigroup A :=
(mul_left_cancel : Πa b c, mul a b = mul a c → b = c)
theorem mul.left_cancel [s : left_cancel_semigroup A] {a b c : A} :
a * b = a * c → b = c :=
!left_cancel_semigroup.mul_left_cancel
abbreviation eq_of_mul_eq_mul_left' := @mul.left_cancel
structure right_cancel_semigroup [class] (A : Type) extends semigroup A :=
(mul_right_cancel : Πa b c, mul a b = mul c b → a = c)
definition mul.right_cancel [s : right_cancel_semigroup A] {a b c : A} :
a * b = c * b → a = c :=
!right_cancel_semigroup.mul_right_cancel
abbreviation eq_of_mul_eq_mul_right' := @mul.right_cancel
/- additive semigroup -/
definition add_semigroup [class] : Type → Type := semigroup
definition add_semigroup.is_set_carrier [instance] [priority 900] (A : Type) [H : add_semigroup A] :
is_set A :=
@semigroup.is_set_carrier A H
definition has_add_of_add_semigroup [reducible] [trans_instance] (A : Type) [H : add_semigroup A] :
has_add A :=
has_add.mk (@mul A (@semigroup.to_has_mul A H))
definition add.assoc [s : add_semigroup A] (a b c : A) : a + b + c = a + (b + c) :=
@mul.assoc A s a b c
definition add_comm_semigroup [class] : Type → Type := comm_semigroup
definition add_semigroup_of_add_comm_semigroup [reducible] [trans_instance] (A : Type)
[H : add_comm_semigroup A] : add_semigroup A :=
@comm_semigroup.to_semigroup A H
definition add.comm [s : add_comm_semigroup A] (a b : A) : a + b = b + a :=
@mul.comm A s a b
theorem add.left_comm [s : add_comm_semigroup A] (a b c : A) :
a + (b + c) = b + (a + c) :=
binary.left_comm (@add.comm A _) (@add.assoc A _) a b c
theorem add.right_comm [s : add_comm_semigroup A] (a b c : A) : (a + b) + c = (a + c) + b :=
binary.right_comm (@add.comm A _) (@add.assoc A _) a b c
definition add_left_cancel_semigroup [class] : Type → Type := left_cancel_semigroup
definition add_semigroup_of_add_left_cancel_semigroup [reducible] [trans_instance] (A : Type)
[H : add_left_cancel_semigroup A] : add_semigroup A :=
@left_cancel_semigroup.to_semigroup A H
definition add.left_cancel [s : add_left_cancel_semigroup A] {a b c : A} :
a + b = a + c → b = c :=
@mul.left_cancel A s a b c
abbreviation eq_of_add_eq_add_left := @add.left_cancel
definition add_right_cancel_semigroup [class] : Type → Type := right_cancel_semigroup
definition add_semigroup_of_add_right_cancel_semigroup [reducible] [trans_instance] (A : Type)
[H : add_right_cancel_semigroup A] : add_semigroup A :=
@right_cancel_semigroup.to_semigroup A H
definition add.right_cancel [s : add_right_cancel_semigroup A] {a b c : A} :
a + b = c + b → a = c :=
@mul.right_cancel A s a b c
abbreviation eq_of_add_eq_add_right := @add.right_cancel
/- monoid -/
structure monoid [class] (A : Type) extends semigroup A, has_one A :=
(one_mul : Πa, mul one a = a) (mul_one : Πa, mul a one = a)
definition one_mul [s : monoid A] (a : A) : 1 * a = a := !monoid.one_mul
definition mul_one [s : monoid A] (a : A) : a * 1 = a := !monoid.mul_one
structure comm_monoid [class] (A : Type) extends monoid A, comm_semigroup A
/- additive monoid -/
definition add_monoid [class] : Type → Type := monoid
definition add_semigroup_of_add_monoid [reducible] [trans_instance] (A : Type)
[H : add_monoid A] : add_semigroup A :=
@monoid.to_semigroup A H
definition has_zero_of_add_monoid [reducible] [trans_instance] (A : Type)
[H : add_monoid A] : has_zero A :=
has_zero.mk (@one A (@monoid.to_has_one A H))
definition zero_add [s : add_monoid A] (a : A) : 0 + a = a := @monoid.one_mul A s a
definition add_zero [s : add_monoid A] (a : A) : a + 0 = a := @monoid.mul_one A s a
definition add_comm_monoid [class] : Type → Type := comm_monoid
definition add_monoid_of_add_comm_monoid [reducible] [trans_instance] (A : Type)
[H : add_comm_monoid A] : add_monoid A :=
@comm_monoid.to_monoid A H
definition add_comm_semigroup_of_add_comm_monoid [reducible] [trans_instance] (A : Type)
[H : add_comm_monoid A] : add_comm_semigroup A :=
@comm_monoid.to_comm_semigroup A H
definition add_monoid.to_monoid {A : Type} [s : add_monoid A] : monoid A := s
definition add_comm_monoid.to_comm_monoid {A : Type} [s : add_comm_monoid A] : comm_monoid A := s
definition monoid.to_add_monoid {A : Type} [s : monoid A] : add_monoid A := s
definition comm_monoid.to_add_comm_monoid {A : Type} [s : comm_monoid A] : add_comm_monoid A := s
section add_comm_monoid
variables [s : add_comm_monoid A]
include s
theorem add_comm_three (a b c : A) : a + b + c = c + b + a :=
by rewrite [{a + _}add.comm, {_ + c}add.comm, -*add.assoc]
theorem add.comm4 : Π (n m k l : A), n + m + (k + l) = n + k + (m + l) :=
comm4 add.comm add.assoc
end add_comm_monoid
/- group -/
structure group [class] (A : Type) extends monoid A, has_inv A :=
(mul_left_inv : Πa, mul (inv a) a = one)
-- Note: with more work, we could derive the axiom one_mul
section group
variable [s : group A]
include s
definition mul.left_inv (a : A) : a⁻¹ * a = 1 := !group.mul_left_inv
theorem inv_mul_cancel_left (a b : A) : a⁻¹ * (a * b) = b :=
by rewrite [-mul.assoc, mul.left_inv, one_mul]
theorem inv_mul_cancel_right (a b : A) : a * b⁻¹ * b = a :=
by rewrite [mul.assoc, mul.left_inv, mul_one]
theorem inv_eq_of_mul_eq_one {a b : A} (H : a * b = 1) : a⁻¹ = b :=
by rewrite [-mul_one a⁻¹, -H, inv_mul_cancel_left]
theorem one_inv : 1⁻¹ = (1 : A) := inv_eq_of_mul_eq_one (one_mul 1)
theorem inv_inv (a : A) : (a⁻¹)⁻¹ = a := inv_eq_of_mul_eq_one (mul.left_inv a)
theorem inv.inj {a b : A} (H : a⁻¹ = b⁻¹) : a = b :=
by rewrite [-inv_inv a, H, inv_inv b]
theorem inv_eq_inv_iff_eq (a b : A) : a⁻¹ = b⁻¹ ↔ a = b :=
iff.intro (assume H, inv.inj H) (assume H, ap _ H)
theorem inv_eq_one_iff_eq_one (a : A) : a⁻¹ = 1 ↔ a = 1 :=
one_inv ▸ inv_eq_inv_iff_eq a 1
theorem eq_one_of_inv_eq_one (a : A) : a⁻¹ = 1 → a = 1 :=
iff.mp !inv_eq_one_iff_eq_one
theorem eq_inv_of_eq_inv {a b : A} (H : a = b⁻¹) : b = a⁻¹ :=
by rewrite [H, inv_inv]
theorem eq_inv_iff_eq_inv (a b : A) : a = b⁻¹ ↔ b = a⁻¹ :=
iff.intro !eq_inv_of_eq_inv !eq_inv_of_eq_inv
theorem eq_inv_of_mul_eq_one {a b : A} (H : a * b = 1) : a = b⁻¹ :=
begin apply eq_inv_of_eq_inv, symmetry, exact inv_eq_of_mul_eq_one H end
theorem mul.right_inv (a : A) : a * a⁻¹ = 1 :=
calc
a * a⁻¹ = (a⁻¹)⁻¹ * a⁻¹ : inv_inv
... = 1 : mul.left_inv
theorem mul_inv_cancel_left (a b : A) : a * (a⁻¹ * b) = b :=
calc
a * (a⁻¹ * b) = a * a⁻¹ * b : by rewrite mul.assoc
... = 1 * b : mul.right_inv
... = b : one_mul
theorem mul_inv_cancel_right (a b : A) : a * b * b⁻¹ = a :=
calc
a * b * b⁻¹ = a * (b * b⁻¹) : mul.assoc
... = a * 1 : mul.right_inv
... = a : mul_one
theorem mul_inv (a b : A) : (a * b)⁻¹ = b⁻¹ * a⁻¹ :=
inv_eq_of_mul_eq_one
(calc
a * b * (b⁻¹ * a⁻¹) = a * (b * (b⁻¹ * a⁻¹)) : mul.assoc
... = a * a⁻¹ : mul_inv_cancel_left
... = 1 : mul.right_inv)
theorem eq_of_mul_inv_eq_one {a b : A} (H : a * b⁻¹ = 1) : a = b :=
calc
a = a * b⁻¹ * b : by rewrite inv_mul_cancel_right
... = 1 * b : H
... = b : one_mul
theorem eq_mul_inv_of_mul_eq {a b c : A} (H : a * c = b) : a = b * c⁻¹ :=
by rewrite [-H, mul_inv_cancel_right]
theorem eq_inv_mul_of_mul_eq {a b c : A} (H : b * a = c) : a = b⁻¹ * c :=
by rewrite [-H, inv_mul_cancel_left]
theorem inv_mul_eq_of_eq_mul {a b c : A} (H : b = a * c) : a⁻¹ * b = c :=
by rewrite [H, inv_mul_cancel_left]
theorem mul_inv_eq_of_eq_mul {a b c : A} (H : a = c * b) : a * b⁻¹ = c :=
by rewrite [H, mul_inv_cancel_right]
theorem eq_mul_of_mul_inv_eq {a b c : A} (H : a * c⁻¹ = b) : a = b * c :=
!inv_inv ▸ (eq_mul_inv_of_mul_eq H)
theorem eq_mul_of_inv_mul_eq {a b c : A} (H : b⁻¹ * a = c) : a = b * c :=
!inv_inv ▸ (eq_inv_mul_of_mul_eq H)
theorem mul_eq_of_eq_inv_mul {a b c : A} (H : b = a⁻¹ * c) : a * b = c :=
!inv_inv ▸ (inv_mul_eq_of_eq_mul H)
theorem mul_eq_of_eq_mul_inv {a b c : A} (H : a = c * b⁻¹) : a * b = c :=
!inv_inv ▸ (mul_inv_eq_of_eq_mul H)
theorem mul_eq_iff_eq_inv_mul (a b c : A) : a * b = c ↔ b = a⁻¹ * c :=
iff.intro eq_inv_mul_of_mul_eq mul_eq_of_eq_inv_mul
theorem mul_eq_iff_eq_mul_inv (a b c : A) : a * b = c ↔ a = c * b⁻¹ :=
iff.intro eq_mul_inv_of_mul_eq mul_eq_of_eq_mul_inv
theorem mul_left_cancel {a b c : A} (H : a * b = a * c) : b = c :=
by rewrite [-inv_mul_cancel_left a b, H, inv_mul_cancel_left]
theorem mul_right_cancel {a b c : A} (H : a * b = c * b) : a = c :=
by rewrite [-mul_inv_cancel_right a b, H, mul_inv_cancel_right]
theorem mul_eq_one_of_mul_eq_one {a b : A} (H : b * a = 1) : a * b = 1 :=
by rewrite [-inv_eq_of_mul_eq_one H, mul.left_inv]
theorem mul_eq_one_iff_mul_eq_one (a b : A) : a * b = 1 ↔ b * a = 1 :=
iff.intro !mul_eq_one_of_mul_eq_one !mul_eq_one_of_mul_eq_one
definition conj_by (g a : A) := g * a * g⁻¹
definition is_conjugate (a b : A) := Σ x, conj_by x b = a
local infixl ` ~ ` := is_conjugate
local infixr ` ∘c `:55 := conj_by
lemma conj_compose (f g a : A) : f ∘c g ∘c a = f*g ∘c a :=
calc f ∘c g ∘c a = f * (g * a * g⁻¹) * f⁻¹ : rfl
... = f * (g * a) * g⁻¹ * f⁻¹ : mul.assoc
... = f * g * a * g⁻¹ * f⁻¹ : mul.assoc
... = f * g * a * (g⁻¹ * f⁻¹) : mul.assoc
... = f * g * a * (f * g)⁻¹ : mul_inv
lemma conj_id (a : A) : 1 ∘c a = a :=
calc 1 * a * 1⁻¹ = a * 1⁻¹ : one_mul
... = a * 1 : one_inv
... = a : mul_one
lemma conj_one (g : A) : g ∘c 1 = 1 :=
calc g * 1 * g⁻¹ = g * g⁻¹ : mul_one
... = 1 : mul.right_inv
lemma conj_inv_cancel (g : A) : Π a, g⁻¹ ∘c g ∘c a = a :=
assume a, calc
g⁻¹ ∘c g ∘c a = g⁻¹*g ∘c a : conj_compose
... = 1 ∘c a : mul.left_inv
... = a : conj_id
lemma conj_inv (g : A) : Π a, (g ∘c a)⁻¹ = g ∘c a⁻¹ :=
take a, calc
(g * a * g⁻¹)⁻¹ = g⁻¹⁻¹ * (g * a)⁻¹ : mul_inv
... = g⁻¹⁻¹ * (a⁻¹ * g⁻¹) : mul_inv
... = g⁻¹⁻¹ * a⁻¹ * g⁻¹ : mul.assoc
... = g * a⁻¹ * g⁻¹ : inv_inv
lemma is_conj.refl (a : A) : a ~ a := sigma.mk 1 (conj_id a)
lemma is_conj.symm (a b : A) : a ~ b → b ~ a :=
assume Pab, obtain x (Pconj : x ∘c b = a), from Pab,
have Pxinv : x⁻¹ ∘c x ∘c b = x⁻¹ ∘c a, begin congruence, assumption end,
sigma.mk x⁻¹ (inverse (conj_inv_cancel x b ▸ Pxinv))
lemma is_conj.trans (a b c : A) : a ~ b → b ~ c → a ~ c :=
assume Pab, assume Pbc,
obtain x (Px : x ∘c b = a), from Pab,
obtain y (Py : y ∘c c = b), from Pbc,
sigma.mk (x*y) (calc
x*y ∘c c = x ∘c y ∘c c : conj_compose
... = x ∘c b : Py
... = a : Px)
definition group.to_left_cancel_semigroup [trans_instance] : left_cancel_semigroup A :=
⦃ left_cancel_semigroup, s,
mul_left_cancel := @mul_left_cancel A s ⦄
definition group.to_right_cancel_semigroup [trans_instance] : right_cancel_semigroup A :=
⦃ right_cancel_semigroup, s,
mul_right_cancel := @mul_right_cancel A s ⦄
end group
structure comm_group [class] (A : Type) extends group A, comm_monoid A
/- additive group -/
definition add_group [class] : Type → Type := group
definition add_semigroup_of_add_group [reducible] [trans_instance] (A : Type)
[H : add_group A] : add_monoid A :=
@group.to_monoid A H
definition has_zero_of_add_group [reducible] [trans_instance] (A : Type)
[H : add_group A] : has_neg A :=
has_neg.mk (@inv A (@group.to_has_inv A H))
definition add_group.to_group {A : Type} [s : add_group A] : group A := s
definition group.to_add_group {A : Type} [s : group A] : add_group A := s
section add_group
variables [s : add_group A]
include s
theorem add.left_inv (a : A) : -a + a = 0 := @group.mul_left_inv A s a
theorem neg_add_cancel_left (a b : A) : -a + (a + b) = b :=
by rewrite [-add.assoc, add.left_inv, zero_add]
theorem neg_add_cancel_right (a b : A) : a + -b + b = a :=
by rewrite [add.assoc, add.left_inv, add_zero]
theorem neg_eq_of_add_eq_zero {a b : A} (H : a + b = 0) : -a = b :=
by rewrite [-add_zero (-a), -H, neg_add_cancel_left]
theorem neg_zero : -0 = (0 : A) := neg_eq_of_add_eq_zero (zero_add 0)
theorem neg_neg (a : A) : -(-a) = a := neg_eq_of_add_eq_zero (add.left_inv a)
theorem eq_neg_of_add_eq_zero {a b : A} (H : a + b = 0) : a = -b :=
by rewrite [-neg_eq_of_add_eq_zero H, neg_neg]
theorem neg.inj {a b : A} (H : -a = -b) : a = b :=
calc
a = -(-a) : neg_neg
... = b : neg_eq_of_add_eq_zero (H⁻¹ ▸ (add.left_inv _))
theorem neg_eq_neg_iff_eq (a b : A) : -a = -b ↔ a = b :=
iff.intro (assume H, neg.inj H) (assume H, ap _ H)
theorem eq_of_neg_eq_neg {a b : A} : -a = -b → a = b :=
iff.mp !neg_eq_neg_iff_eq
theorem neg_eq_zero_iff_eq_zero (a : A) : -a = 0 ↔ a = 0 :=
neg_zero ▸ !neg_eq_neg_iff_eq
theorem eq_zero_of_neg_eq_zero {a : A} : -a = 0 → a = 0 :=
iff.mp !neg_eq_zero_iff_eq_zero
theorem eq_neg_of_eq_neg {a b : A} (H : a = -b) : b = -a :=
H⁻¹ ▸ (neg_neg b)⁻¹
theorem eq_neg_iff_eq_neg (a b : A) : a = -b ↔ b = -a :=
iff.intro !eq_neg_of_eq_neg !eq_neg_of_eq_neg
theorem add.right_inv (a : A) : a + -a = 0 :=
calc
a + -a = -(-a) + -a : neg_neg
... = 0 : add.left_inv
theorem add_neg_cancel_left (a b : A) : a + (-a + b) = b :=
by rewrite [-add.assoc, add.right_inv, zero_add]
theorem add_neg_cancel_right (a b : A) : a + b + -b = a :=
by rewrite [add.assoc, add.right_inv, add_zero]
theorem neg_add_rev (a b : A) : -(a + b) = -b + -a :=
neg_eq_of_add_eq_zero
begin
rewrite [add.assoc, add_neg_cancel_left, add.right_inv]
end
-- TODO: delete these in favor of sub rules?
theorem eq_add_neg_of_add_eq {a b c : A} (H : a + c = b) : a = b + -c :=
H ▸ !add_neg_cancel_right⁻¹
theorem eq_neg_add_of_add_eq {a b c : A} (H : b + a = c) : a = -b + c :=
H ▸ !neg_add_cancel_left⁻¹
theorem neg_add_eq_of_eq_add {a b c : A} (H : b = a + c) : -a + b = c :=
H⁻¹ ▸ !neg_add_cancel_left
theorem add_neg_eq_of_eq_add {a b c : A} (H : a = c + b) : a + -b = c :=
H⁻¹ ▸ !add_neg_cancel_right
theorem eq_add_of_add_neg_eq {a b c : A} (H : a + -c = b) : a = b + c :=
!neg_neg ▸ (eq_add_neg_of_add_eq H)
theorem eq_add_of_neg_add_eq {a b c : A} (H : -b + a = c) : a = b + c :=
!neg_neg ▸ (eq_neg_add_of_add_eq H)
theorem add_eq_of_eq_neg_add {a b c : A} (H : b = -a + c) : a + b = c :=
!neg_neg ▸ (neg_add_eq_of_eq_add H)
theorem add_eq_of_eq_add_neg {a b c : A} (H : a = c + -b) : a + b = c :=
!neg_neg ▸ (add_neg_eq_of_eq_add H)
theorem add_eq_iff_eq_neg_add (a b c : A) : a + b = c ↔ b = -a + c :=
iff.intro eq_neg_add_of_add_eq add_eq_of_eq_neg_add
theorem add_eq_iff_eq_add_neg (a b c : A) : a + b = c ↔ a = c + -b :=
iff.intro eq_add_neg_of_add_eq add_eq_of_eq_add_neg
theorem add_left_cancel {a b c : A} (H : a + b = a + c) : b = c :=
calc b = -a + (a + b) : !neg_add_cancel_left⁻¹
... = -a + (a + c) : H
... = c : neg_add_cancel_left
theorem add_right_cancel {a b c : A} (H : a + b = c + b) : a = c :=
calc a = (a + b) + -b : !add_neg_cancel_right⁻¹
... = (c + b) + -b : H
... = c : add_neg_cancel_right
definition add_group.to_add_left_cancel_semigroup [reducible] [trans_instance] :
add_left_cancel_semigroup A :=
@group.to_left_cancel_semigroup A s
definition add_group.to_add_right_cancel_semigroup [reducible] [trans_instance] :
add_right_cancel_semigroup A :=
@group.to_right_cancel_semigroup A s
theorem add_neg_eq_neg_add_rev {a b : A} : a + -b = -(b + -a) :=
by rewrite [neg_add_rev, neg_neg]
/- sub -/
-- TODO: derive corresponding facts for div in a field
protected definition algebra.sub [reducible] (a b : A) : A := a + -b
definition add_group_has_sub [instance] : has_sub A :=
has_sub.mk algebra.sub
theorem sub_eq_add_neg (a b : A) : a - b = a + -b := rfl
theorem sub_self (a : A) : a - a = 0 := !add.right_inv
theorem sub_add_cancel (a b : A) : a - b + b = a := !neg_add_cancel_right
theorem add_sub_cancel (a b : A) : a + b - b = a := !add_neg_cancel_right
theorem eq_of_sub_eq_zero {a b : A} (H : a - b = 0) : a = b :=
calc
a = (a - b) + b : !sub_add_cancel⁻¹
... = 0 + b : H
... = b : zero_add
theorem eq_iff_sub_eq_zero (a b : A) : a = b ↔ a - b = 0 :=
iff.intro (assume H, H ▸ !sub_self) (assume H, eq_of_sub_eq_zero H)
theorem zero_sub (a : A) : 0 - a = -a := !zero_add
theorem sub_zero (a : A) : a - 0 = a :=
by rewrite [sub_eq_add_neg, neg_zero, add_zero]
theorem sub_neg_eq_add (a b : A) : a - (-b) = a + b :=
by change a + -(-b) = a + b; rewrite neg_neg
theorem neg_sub (a b : A) : -(a - b) = b - a :=
neg_eq_of_add_eq_zero
(calc
a - b + (b - a) = a - b + b - a : by krewrite -add.assoc
... = a - a : sub_add_cancel
... = 0 : sub_self)
theorem add_sub (a b c : A) : a + (b - c) = a + b - c := !add.assoc⁻¹
theorem sub_add_eq_sub_sub_swap (a b c : A) : a - (b + c) = a - c - b :=
calc
a - (b + c) = a + (-c - b) : by rewrite [sub_eq_add_neg, neg_add_rev]
... = a - c - b : by krewrite -add.assoc
theorem sub_eq_iff_eq_add (a b c : A) : a - b = c ↔ a = c + b :=
iff.intro (assume H, eq_add_of_add_neg_eq H) (assume H, add_neg_eq_of_eq_add H)
theorem eq_sub_iff_add_eq (a b c : A) : a = b - c ↔ a + c = b :=
iff.intro (assume H, add_eq_of_eq_add_neg H) (assume H, eq_add_neg_of_add_eq H)
theorem eq_iff_eq_of_sub_eq_sub {a b c d : A} (H : a - b = c - d) : a = b ↔ c = d :=
calc
a = b ↔ a - b = 0 : eq_iff_sub_eq_zero
... = (c - d = 0) : H
... ↔ c = d : iff.symm (eq_iff_sub_eq_zero c d)
theorem eq_sub_of_add_eq {a b c : A} (H : a + c = b) : a = b - c :=
!eq_add_neg_of_add_eq H
theorem sub_eq_of_eq_add {a b c : A} (H : a = c + b) : a - b = c :=
!add_neg_eq_of_eq_add H
theorem eq_add_of_sub_eq {a b c : A} (H : a - c = b) : a = b + c :=
eq_add_of_add_neg_eq H
theorem add_eq_of_eq_sub {a b c : A} (H : a = c - b) : a + b = c :=
add_eq_of_eq_add_neg H
end add_group
definition add_comm_group [class] : Type → Type := comm_group
definition add_group_of_add_comm_group [reducible] [trans_instance] (A : Type)
[H : add_comm_group A] : add_group A :=
@comm_group.to_group A H
definition add_comm_monoid_of_add_comm_group [reducible] [trans_instance] (A : Type)
[H : add_comm_group A] : add_comm_monoid A :=
@comm_group.to_comm_monoid A H
definition add_comm_group.to_comm_group {A : Type} [s : add_comm_group A] : comm_group A := s
definition comm_group.to_add_comm_group {A : Type} [s : comm_group A] : add_comm_group A := s
section add_comm_group
variable [s : add_comm_group A]
include s
theorem sub_add_eq_sub_sub (a b c : A) : a - (b + c) = a - b - c :=
!add.comm ▸ !sub_add_eq_sub_sub_swap
theorem neg_add_eq_sub (a b : A) : -a + b = b - a := !add.comm
theorem neg_add (a b : A) : -(a + b) = -a + -b := add.comm (-b) (-a) ▸ neg_add_rev a b
theorem sub_add_eq_add_sub (a b c : A) : a - b + c = a + c - b := !add.right_comm
theorem sub_sub (a b c : A) : a - b - c = a - (b + c) :=
by rewrite [▸ a + -b + -c = _, add.assoc, -neg_add]
theorem add_sub_add_left_eq_sub (a b c : A) : (c + a) - (c + b) = a - b :=
by rewrite [sub_add_eq_sub_sub, (add.comm c a), add_sub_cancel]
theorem eq_sub_of_add_eq' {a b c : A} (H : c + a = b) : a = b - c :=
!eq_sub_of_add_eq (!add.comm ▸ H)
theorem sub_eq_of_eq_add' {a b c : A} (H : a = b + c) : a - b = c :=
!sub_eq_of_eq_add (!add.comm ▸ H)
theorem eq_add_of_sub_eq' {a b c : A} (H : a - b = c) : a = b + c :=
!add.comm ▸ eq_add_of_sub_eq H
theorem add_eq_of_eq_sub' {a b c : A} (H : b = c - a) : a + b = c :=
!add.comm ▸ add_eq_of_eq_sub H
theorem sub_sub_self (a b : A) : a - (a - b) = b :=
by rewrite [sub_eq_add_neg, neg_sub, add.comm, sub_add_cancel]
theorem add_sub_comm (a b c d : A) : a + b - (c + d) = (a - c) + (b - d) :=
by rewrite [sub_add_eq_sub_sub, -sub_add_eq_add_sub a c b, add_sub]
theorem sub_eq_sub_add_sub (a b c : A) : a - b = c - b + (a - c) :=
by rewrite [add_sub, sub_add_cancel] ⬝ !add.comm
theorem neg_neg_sub_neg (a b : A) : - (-a - -b) = a - b :=
by rewrite [neg_sub, sub_neg_eq_add, neg_add_eq_sub]
end add_comm_group
definition group_of_add_group (A : Type) [G : add_group A] : group A :=
⦃group,
mul := has_add.add,
mul_assoc := add.assoc,
one := !has_zero.zero,
one_mul := zero_add,
mul_one := add_zero,
inv := has_neg.neg,
mul_left_inv := add.left_inv,
is_set_carrier := _⦄
namespace norm_num
reveal add.assoc
definition add1 [s : has_add A] [s' : has_one A] (a : A) : A := add a one
theorem add_comm_four [s : add_comm_semigroup A] (a b : A) : a + a + (b + b) = (a + b) + (a + b) :=
by rewrite [-add.assoc at {1}, add.comm, {a + b}add.comm at {1}, *add.assoc]
theorem add_comm_middle [s : add_comm_semigroup A] (a b c : A) : a + b + c = a + c + b :=
by rewrite [add.assoc, add.comm b, -add.assoc]
theorem bit0_add_bit0 [s : add_comm_semigroup A] (a b : A) : bit0 a + bit0 b = bit0 (a + b) :=
!add_comm_four
theorem bit0_add_bit0_helper [s : add_comm_semigroup A] (a b t : A) (H : a + b = t) :
bit0 a + bit0 b = bit0 t :=
by rewrite -H; apply bit0_add_bit0
theorem bit1_add_bit0 [s : add_comm_semigroup A] [s' : has_one A] (a b : A) :
bit1 a + bit0 b = bit1 (a + b) :=
begin
rewrite [↑bit0, ↑bit1, add_comm_middle], congruence, apply add_comm_four
end
theorem bit1_add_bit0_helper [s : add_comm_semigroup A] [s' : has_one A] (a b t : A)
(H : a + b = t) : bit1 a + bit0 b = bit1 t :=
by rewrite -H; apply bit1_add_bit0
theorem bit0_add_bit1 [s : add_comm_semigroup A] [s' : has_one A] (a b : A) :
bit0 a + bit1 b = bit1 (a + b) :=
by rewrite [{bit0 a + bit1 b}add.comm,{a + b}add.comm]; exact bit1_add_bit0 b a
theorem bit0_add_bit1_helper [s : add_comm_semigroup A] [s' : has_one A] (a b t : A)
(H : a + b = t) : bit0 a + bit1 b = bit1 t :=
by rewrite -H; apply bit0_add_bit1
theorem bit1_add_bit1 [s : add_comm_semigroup A] [s' : has_one A] (a b : A) :
bit1 a + bit1 b = bit0 (add1 (a + b)) :=
begin
rewrite ↑[bit0, bit1, add1, add.assoc],
rewrite [*add.assoc, {_ + (b + 1)}add.comm, {_ + (b + 1 + _)}add.comm,
{_ + (b + 1 + _ + _)}add.comm, *add.assoc, {1 + a}add.comm, -{b + (a + 1)}add.assoc,
{b + a}add.comm, *add.assoc]
end
theorem bit1_add_bit1_helper [s : add_comm_semigroup A] [s' : has_one A] (a b t s: A)
(H : (a + b) = t) (H2 : add1 t = s) : bit1 a + bit1 b = bit0 s :=
begin rewrite [-H2, -H], apply bit1_add_bit1 end
theorem bin_add_zero [s : add_monoid A] (a : A) : a + zero = a := !add_zero
theorem bin_zero_add [s : add_monoid A] (a : A) : zero + a = a := !zero_add
theorem one_add_bit0 [s : add_comm_semigroup A] [s' : has_one A] (a : A) : one + bit0 a = bit1 a :=
begin rewrite ↑[bit0, bit1], rewrite add.comm end
theorem bit0_add_one [s : has_add A] [s' : has_one A] (a : A) : bit0 a + one = bit1 a :=
rfl
theorem bit1_add_one [s : has_add A] [s' : has_one A] (a : A) : bit1 a + one = add1 (bit1 a) :=
rfl
theorem bit1_add_one_helper [s : has_add A] [s' : has_one A] (a t : A) (H : add1 (bit1 a) = t) :
bit1 a + one = t :=
by rewrite -H
theorem one_add_bit1 [s : add_comm_semigroup A] [s' : has_one A] (a : A) :
one + bit1 a = add1 (bit1 a) := !add.comm
theorem one_add_bit1_helper [s : add_comm_semigroup A] [s' : has_one A] (a t : A)
(H : add1 (bit1 a) = t) : one + bit1 a = t :=
by rewrite -H; apply one_add_bit1
theorem add1_bit0 [s : has_add A] [s' : has_one A] (a : A) : add1 (bit0 a) = bit1 a :=
rfl
theorem add1_bit1 [s : add_comm_semigroup A] [s' : has_one A] (a : A) :
add1 (bit1 a) = bit0 (add1 a) :=
begin
rewrite ↑[add1, bit1, bit0],
rewrite [add.assoc, add_comm_four]
end
theorem add1_bit1_helper [s : add_comm_semigroup A] [s' : has_one A] (a t : A) (H : add1 a = t) :
add1 (bit1 a) = bit0 t :=
by rewrite -H; apply add1_bit1
theorem add1_one [s : has_add A] [s' : has_one A] : add1 (one : A) = bit0 one :=
rfl
theorem add1_zero [s : add_monoid A] [s' : has_one A] : add1 (zero : A) = one :=
begin
rewrite [↑add1, zero_add]
end
theorem one_add_one [s : has_add A] [s' : has_one A] : (one : A) + one = bit0 one :=
rfl
theorem subst_into_sum [s : has_add A] (l r tl tr t : A) (prl : l = tl) (prr : r = tr)
(prt : tl + tr = t) : l + r = t :=
by rewrite [prl, prr, prt]
theorem neg_zero_helper [s : add_group A] (a : A) (H : a = 0) : - a = 0 :=
by rewrite [H, neg_zero]
end norm_num
end algebra
open algebra
attribute [simp]
zero_add add_zero one_mul mul_one
at simplifier.unit
attribute [simp]
neg_neg sub_eq_add_neg
at simplifier.neg
attribute [simp]
add.assoc add.comm add.left_comm
mul.left_comm mul.comm mul.assoc
at simplifier.ac