270 lines
9.8 KiB
Text
270 lines
9.8 KiB
Text
/-
|
||
Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
|
||
Module: algebra.precategory.constructions
|
||
Authors: Floris van Doorn, Jakob von Raumer
|
||
|
||
This file contains basic constructions on precategories, including common precategories
|
||
-/
|
||
|
||
import .nat_trans
|
||
import types.prod types.sigma types.pi
|
||
|
||
open eq prod eq eq.ops equiv is_trunc
|
||
|
||
namespace category
|
||
namespace opposite
|
||
|
||
definition opposite [reducible] {ob : Type} (C : precategory ob) : precategory ob :=
|
||
precategory.mk (λ a b, hom b a)
|
||
(λ a b, !homH)
|
||
(λ a b c f g, g ∘ f)
|
||
(λ a, id)
|
||
(λ a b c d f g h, !assoc⁻¹)
|
||
(λ a b f, !id_right)
|
||
(λ a b f, !id_left)
|
||
|
||
definition Opposite [reducible] (C : Precategory) : Precategory := precategory.Mk (opposite C)
|
||
|
||
infixr `∘op`:60 := @comp _ (opposite _) _ _ _
|
||
|
||
variables {C : Precategory} {a b c : C}
|
||
|
||
set_option apply.class_instance false -- disable class instance resolution in the apply tactic
|
||
|
||
definition compose_op {f : hom a b} {g : hom b c} : f ∘op g = g ∘ f := idp
|
||
|
||
-- TODO: Decide whether just to use funext for this theorem or
|
||
-- take the trick they use in Coq-HoTT, and introduce a further
|
||
-- axiom in the definition of precategories that provides thee
|
||
-- symmetric associativity proof.
|
||
definition opposite_opposite' {ob : Type} (C : precategory ob) : opposite (opposite C) = C :=
|
||
begin
|
||
apply (precategory.rec_on C), intros (hom', homH', comp', ID', assoc', id_left', id_right'),
|
||
apply (ap (λassoc'', precategory.mk hom' @homH' comp' ID' assoc'' id_left' id_right')),
|
||
repeat (apply eq_of_homotopy ; intros ),
|
||
apply ap,
|
||
apply (@is_hset.elim), apply !homH',
|
||
end
|
||
|
||
definition opposite_opposite : Opposite (Opposite C) = C :=
|
||
(ap (Precategory.mk C) (opposite_opposite' C)) ⬝ !Precategory.eta
|
||
|
||
end opposite
|
||
|
||
-- Note: Discrete precategory doesn't really make sense in HoTT,
|
||
-- We'll define a discrete _category_ later.
|
||
/-section
|
||
open decidable unit empty
|
||
variables {A : Type} [H : decidable_eq A]
|
||
include H
|
||
definition set_hom (a b : A) := decidable.rec_on (H a b) (λh, unit) (λh, empty)
|
||
theorem set_hom_subsingleton [instance] (a b : A) : subsingleton (set_hom a b) := _
|
||
definition set_compose {a b c : A} (g : set_hom b c) (f : set_hom a b) : set_hom a c :=
|
||
decidable.rec_on
|
||
(H b c)
|
||
(λ Hbc g, decidable.rec_on
|
||
(H a b)
|
||
(λ Hab f, rec_on_true (trans Hab Hbc) ⋆)
|
||
(λh f, empty.rec _ f) f)
|
||
(λh (g : empty), empty.rec _ g) g
|
||
omit H
|
||
definition discrete_precategory (A : Type) [H : decidable_eq A] : precategory A :=
|
||
mk (λa b, set_hom a b)
|
||
(λ a b c g f, set_compose g f)
|
||
(λ a, decidable.rec_on_true rfl ⋆)
|
||
(λ a b c d h g f, @subsingleton.elim (set_hom a d) _ _ _)
|
||
(λ a b f, @subsingleton.elim (set_hom a b) _ _ _)
|
||
(λ a b f, @subsingleton.elim (set_hom a b) _ _ _)
|
||
definition Discrete_category (A : Type) [H : decidable_eq A] := Mk (discrete_category A)
|
||
end
|
||
section
|
||
open unit bool
|
||
definition category_one := discrete_category unit
|
||
definition Category_one := Mk category_one
|
||
definition category_two := discrete_category bool
|
||
definition Category_two := Mk category_two
|
||
end-/
|
||
|
||
namespace product
|
||
section
|
||
open prod is_trunc
|
||
|
||
definition precategory_prod [reducible] {obC obD : Type} (C : precategory obC) (D : precategory obD)
|
||
: precategory (obC × obD) :=
|
||
precategory.mk (λ a b, hom (pr1 a) (pr1 b) × hom (pr2 a) (pr2 b))
|
||
(λ a b, !is_trunc_prod)
|
||
(λ a b c g f, (pr1 g ∘ pr1 f , pr2 g ∘ pr2 f))
|
||
(λ a, (id, id))
|
||
(λ a b c d h g f, pair_eq !assoc !assoc )
|
||
(λ a b f, prod_eq !id_left !id_left )
|
||
(λ a b f, prod_eq !id_right !id_right)
|
||
|
||
definition Precategory_prod [reducible] (C D : Precategory) : Precategory :=
|
||
precategory.Mk (precategory_prod C D)
|
||
|
||
end
|
||
end product
|
||
|
||
namespace ops
|
||
--notation 1 := Category_one
|
||
--notation 2 := Category_two
|
||
postfix `ᵒᵖ`:max := opposite.Opposite
|
||
infixr `×c`:30 := product.Precategory_prod
|
||
--instance [persistent] type_category category_one
|
||
-- category_two product.prod_category
|
||
end ops
|
||
|
||
open ops
|
||
namespace opposite
|
||
open ops functor
|
||
definition opposite_functor [reducible] {C D : Precategory} (F : C ⇒ D) : Cᵒᵖ ⇒ Dᵒᵖ :=
|
||
begin
|
||
apply (@functor.mk (Cᵒᵖ) (Dᵒᵖ)),
|
||
intro a, apply (respect_id F),
|
||
intros, apply (@respect_comp C D)
|
||
end
|
||
|
||
end opposite
|
||
|
||
namespace product
|
||
section
|
||
open ops functor
|
||
definition prod_functor [reducible] {C C' D D' : Precategory} (F : C ⇒ D) (G : C' ⇒ D') : C ×c C' ⇒ D ×c D' :=
|
||
functor.mk (λ a, pair (F (pr1 a)) (G (pr2 a)))
|
||
(λ a b f, pair (F (pr1 f)) (G (pr2 f)))
|
||
(λ a, pair_eq !respect_id !respect_id)
|
||
(λ a b c g f, pair_eq !respect_comp !respect_comp)
|
||
end
|
||
end product
|
||
|
||
definition precategory_hset [reducible] : precategory hset :=
|
||
precategory.mk (λx y : hset, x → y)
|
||
_
|
||
(λx y z g f a, g (f a))
|
||
(λx a, a)
|
||
(λx y z w h g f, eq_of_homotopy (λa, idp))
|
||
(λx y f, eq_of_homotopy (λa, idp))
|
||
(λx y f, eq_of_homotopy (λa, idp))
|
||
|
||
definition Precategory_hset [reducible] : Precategory :=
|
||
Precategory.mk hset precategory_hset
|
||
|
||
section
|
||
open iso functor nat_trans
|
||
definition precategory_functor [instance] [reducible] (D C : Precategory)
|
||
: precategory (functor C D) :=
|
||
precategory.mk (λa b, nat_trans a b)
|
||
(λ a b, @is_hset_nat_trans C D a b)
|
||
(λ a b c g f, nat_trans.compose g f)
|
||
(λ a, nat_trans.id)
|
||
(λ a b c d h g f, !nat_trans.assoc)
|
||
(λ a b f, !nat_trans.id_left)
|
||
(λ a b f, !nat_trans.id_right)
|
||
|
||
definition Precategory_functor [reducible] (D C : Precategory) : Precategory :=
|
||
precategory.Mk (precategory_functor D C)
|
||
|
||
-- definition Precategory_functor_rev [reducible] (C D : Precategory) : Precategory :=
|
||
-- Precategory_functor D C
|
||
end
|
||
namespace ops
|
||
infixr `^c`:35 := Precategory_functor
|
||
end ops
|
||
|
||
section
|
||
open iso functor nat_trans
|
||
/- we prove that if a natural transformation is pointwise an to_fun, then it is an to_fun -/
|
||
variables {C D : Precategory} {F G : C ⇒ D} (η : F ⟹ G) [iso : Π(a : C), is_iso (η a)]
|
||
include iso
|
||
definition nat_trans_inverse : G ⟹ F :=
|
||
nat_trans.mk
|
||
(λc, (η c)⁻¹)
|
||
(λc d f,
|
||
begin
|
||
apply comp_inverse_eq_of_eq_comp,
|
||
apply concat, rotate_left 1, apply assoc,
|
||
apply eq_inverse_comp_of_comp_eq,
|
||
apply inverse,
|
||
apply naturality,
|
||
end)
|
||
definition nat_trans_left_inverse : nat_trans_inverse η ∘n η = nat_trans.id :=
|
||
begin
|
||
fapply (apD011 nat_trans.mk),
|
||
apply eq_of_homotopy, intro c, apply left_inverse,
|
||
apply eq_of_homotopy, intros, apply eq_of_homotopy, intros, apply eq_of_homotopy, intros,
|
||
apply is_hset.elim
|
||
end
|
||
|
||
definition nat_trans_right_inverse : η ∘n nat_trans_inverse η = nat_trans.id :=
|
||
begin
|
||
fapply (apD011 nat_trans.mk),
|
||
apply eq_of_homotopy, intro c, apply right_inverse,
|
||
apply eq_of_homotopy, intros, apply eq_of_homotopy, intros, apply eq_of_homotopy, intros,
|
||
apply is_hset.elim
|
||
end
|
||
|
||
definition is_iso_nat_trans : is_iso η :=
|
||
is_iso.mk (nat_trans_left_inverse η) (nat_trans_right_inverse η)
|
||
|
||
omit iso
|
||
-- local attribute is_iso_nat_trans [instance]
|
||
-- definition functor_iso_functor (H : Π(a : C), F a ≅ G a) : F ≅ G := -- is this true?
|
||
-- iso.mk _
|
||
end
|
||
|
||
section
|
||
open iso functor category.ops nat_trans iso.iso
|
||
/- and conversely, if a natural transformation is an iso, it is componentwise an iso -/
|
||
variables {C D : Precategory} {F G : D ^c C} (η : hom F G) [isoη : is_iso η] (c : C)
|
||
include isoη
|
||
definition componentwise_is_iso : is_iso (η c) :=
|
||
@is_iso.mk _ _ _ _ _ (natural_map η⁻¹ c) (ap010 natural_map ( left_inverse η) c)
|
||
(ap010 natural_map (right_inverse η) c)
|
||
|
||
local attribute componentwise_is_iso [instance]
|
||
|
||
definition natural_map_inverse : natural_map η⁻¹ c = (η c)⁻¹ := idp
|
||
|
||
definition naturality_iso {c c' : C} (f : c ⟶ c') : G f = η c' ∘ F f ∘ (η c)⁻¹ :=
|
||
calc
|
||
G f = (G f ∘ η c) ∘ (η c)⁻¹ : comp_inverse_cancel_right
|
||
... = (η c' ∘ F f) ∘ (η c)⁻¹ : {naturality η f}
|
||
... = η c' ∘ F f ∘ (η c)⁻¹ : assoc
|
||
|
||
definition naturality_iso' {c c' : C} (f : c ⟶ c') : (η c')⁻¹ ∘ G f ∘ η c = F f :=
|
||
calc
|
||
(η c')⁻¹ ∘ G f ∘ η c = (η c')⁻¹ ∘ η c' ∘ F f : {naturality η f}
|
||
... = F f : inverse_comp_cancel_left
|
||
|
||
omit isoη
|
||
|
||
definition componentwise_iso (η : F ≅ G) (c : C) : F c ≅ G c :=
|
||
@iso.mk _ _ _ _ (natural_map (to_hom η) c)
|
||
(@componentwise_is_iso _ _ _ _ (to_hom η) (struct η) c)
|
||
|
||
definition componentwise_iso_id (c : C) : componentwise_iso (iso.refl F) c = iso.refl (F c) :=
|
||
iso.eq_mk (idpath id)
|
||
|
||
definition componentwise_iso_iso_of_eq (p : F = G) (c : C)
|
||
: componentwise_iso (iso_of_eq p) c = iso_of_eq (ap010 to_fun_ob p c) :=
|
||
eq.rec_on p !componentwise_iso_id
|
||
|
||
definition natural_map_hom_of_eq (p : F = G) (c : C)
|
||
: natural_map (hom_of_eq p) c = hom_of_eq (ap010 to_fun_ob p c) :=
|
||
eq.rec_on p idp
|
||
|
||
definition natural_map_inv_of_eq (p : F = G) (c : C)
|
||
: natural_map (inv_of_eq p) c = hom_of_eq (ap010 to_fun_ob p c)⁻¹ :=
|
||
eq.rec_on p idp
|
||
|
||
end
|
||
|
||
namespace ops
|
||
infixr `×f`:30 := product.prod_functor
|
||
infixr `ᵒᵖᶠ`:(max+1) := opposite.opposite_functor
|
||
end ops
|
||
|
||
|
||
end category
|