lean2/library/algebra/category/constructions.lean

372 lines
15 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- Copyright (c) 2014 Floris van Doorn. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Floris van Doorn
-- This file contains basic constructions on categories, including common categories
import .natural_transformation
import data.unit data.sigma data.prod data.empty data.bool
open eq eq.ops prod
namespace category
namespace opposite
section
definition opposite [reducible] {ob : Type} (C : category ob) : category ob :=
mk (λa b, hom b a)
(λ a b c f g, g ∘ f)
(λ a, id)
(λ a b c d f g h, symm !assoc)
(λ a b f, !id_right)
(λ a b f, !id_left)
definition Opposite [reducible] (C : Category) : Category := Mk (opposite C)
--direct construction:
-- MK C
-- (λa b, hom b a)
-- (λ a b c f g, g ∘ f)
-- (λ a, id)
-- (λ a b c d f g h, symm !assoc)
-- (λ a b f, !id_right)
-- (λ a b f, !id_left)
infixr `∘op`:60 := @compose _ (opposite _) _ _ _
variables {C : Category} {a b c : C}
theorem compose_op {f : hom a b} {g : hom b c} : f ∘op g = g ∘ f := rfl
theorem op_op' {ob : Type} (C : category ob) : opposite (opposite C) = C :=
category.rec (λ hom comp id assoc idl idr, refl (mk _ _ _ _ _ _)) C
theorem op_op : Opposite (Opposite C) = C :=
(@congr_arg _ _ _ _ (Category.mk C) (op_op' C)) ⬝ !Category.equal
end
end opposite
definition type_category [reducible] : category Type :=
mk (λa b, a → b)
(λ a b c, function.compose)
(λ a, function.id)
(λ a b c d h g f, symm (function.compose.assoc h g f))
(λ a b f, function.compose.left_id f)
(λ a b f, function.compose.right_id f)
definition Type_category [reducible] : Category := Mk type_category
section
open decidable unit empty
variables {A : Type} [H : decidable_eq A]
include H
definition set_hom [reducible] (a b : A) := decidable.rec_on (H a b) (λh, unit) (λh, empty)
theorem set_hom_subsingleton [instance] (a b : A) : subsingleton (set_hom a b) := _
definition set_compose [reducible] {a b c : A} (g : set_hom b c) (f : set_hom a b) : set_hom a c :=
decidable.rec_on
(H b c)
(λ Hbc g, decidable.rec_on
(H a b)
(λ Hab f, rec_on_true (trans Hab Hbc) ⋆)
(λh f, empty.rec _ f) f)
(λh (g : empty), empty.rec _ g) g
omit H
definition discrete_category (A : Type) [H : decidable_eq A] : category A :=
mk (λa b, set_hom a b)
(λ a b c g f, set_compose g f)
(λ a, decidable.rec_on_true rfl ⋆)
(λ a b c d h g f, @subsingleton.elim (set_hom a d) _ _ _)
(λ a b f, @subsingleton.elim (set_hom a b) _ _ _)
(λ a b f, @subsingleton.elim (set_hom a b) _ _ _)
local attribute discrete_category [reducible]
definition Discrete_category (A : Type) [H : decidable_eq A] := Mk (discrete_category A)
context
local attribute discrete_category [instance]
include H
theorem discrete_category.endomorphism {a b : A} (f : a ⟶ b) : a = b :=
decidable.rec_on (H a b) (λh f, h) (λh f, empty.rec _ f) f
theorem discrete_category.discrete {a b : A} (f : a ⟶ b)
: eq.rec_on (discrete_category.endomorphism f) f = (ID b) :=
@subsingleton.elim _ !set_hom_subsingleton _ _
definition discrete_category.rec_on {P : Πa b, a ⟶ b → Type} {a b : A} (f : a ⟶ b)
(H : ∀a, P a a id) : P a b f :=
cast (dcongr_arg3 P rfl (discrete_category.endomorphism f)⁻¹
(@subsingleton.elim _ !set_hom_subsingleton _ _))⁻¹ (H a)
end
end
section
open unit bool
definition category_one := discrete_category unit
definition Category_one := Mk category_one
definition category_two := discrete_category bool
definition Category_two := Mk category_two
end
namespace product
section
open prod
definition prod_category [reducible] {obC obD : Type} (C : category obC) (D : category obD)
: category (obC × obD) :=
mk (λa b, hom (pr1 a) (pr1 b) × hom (pr2 a) (pr2 b))
(λ a b c g f, (pr1 g ∘ pr1 f , pr2 g ∘ pr2 f) )
(λ a, (id,id))
(λ a b c d h g f, pair_eq !assoc !assoc )
(λ a b f, prod.equal !id_left !id_left )
(λ a b f, prod.equal !id_right !id_right)
definition Prod_category [reducible] (C D : Category) : Category := Mk (prod_category C D)
end
end product
namespace ops
notation `type`:max := Type_category
notation 1 := Category_one
notation 2 := Category_two
postfix `ᵒᵖ`:max := opposite.Opposite
infixr `×c`:30 := product.Prod_category
attribute type_category [instance]
attribute category_one [instance]
attribute category_two [instance]
attribute product.prod_category [instance]
end ops
open ops
namespace opposite
section
open functor
definition opposite_functor [reducible] {C D : Category} (F : C ⇒ D) : Cᵒᵖ ⇒ Dᵒᵖ :=
@functor.mk (Cᵒᵖ) (Dᵒᵖ)
(λ a, F a)
(λ a b f, F f)
(λ a, respect_id F a)
(λ a b c g f, respect_comp F f g)
end
end opposite
namespace product
section
open ops functor
definition prod_functor [reducible] {C C' D D' : Category} (F : C ⇒ D) (G : C' ⇒ D')
: C ×c C' ⇒ D ×c D' :=
functor.mk (λ a, pair (F (pr1 a)) (G (pr2 a)))
(λ a b f, pair (F (pr1 f)) (G (pr2 f)))
(λ a, pair_eq !respect_id !respect_id)
(λ a b c g f, pair_eq !respect_comp !respect_comp)
end
end product
namespace ops
infixr `×f`:30 := product.prod_functor
infixr `ᵒᵖᶠ`:max := opposite.opposite_functor
end ops
section functor_category
variables (C D : Category)
definition functor_category : category (functor C D) :=
mk (λa b, natural_transformation a b)
(λ a b c g f, natural_transformation.compose g f)
(λ a, natural_transformation.id)
(λ a b c d h g f, !natural_transformation.assoc)
(λ a b f, !natural_transformation.id_left)
(λ a b f, !natural_transformation.id_right)
end functor_category
namespace slice
open sigma function
variables {ob : Type} {C : category ob} {c : ob}
protected definition slice_obs (C : category ob) (c : ob) := Σ(b : ob), hom b c
variables {a b : slice_obs C c}
protected definition to_ob (a : slice_obs C c) : ob := sigma.pr1 a
protected definition to_ob_def (a : slice_obs C c) : to_ob a = sigma.pr1 a := rfl
protected definition ob_hom (a : slice_obs C c) : hom (to_ob a) c := sigma.pr2 a
-- protected theorem slice_obs_equal (H₁ : to_ob a = to_ob b)
-- (H₂ : eq.drec_on H₁ (ob_hom a) = ob_hom b) : a = b :=
-- sigma.equal H₁ H₂
protected definition slice_hom (a b : slice_obs C c) : Type :=
Σ(g : hom (to_ob a) (to_ob b)), ob_hom b ∘ g = ob_hom a
protected definition hom_hom (f : slice_hom a b) : hom (to_ob a) (to_ob b) := sigma.pr1 f
protected definition commute (f : slice_hom a b) : ob_hom b ∘ (hom_hom f) = ob_hom a := sigma.pr2 f
-- protected theorem slice_hom_equal (f g : slice_hom a b) (H : hom_hom f = hom_hom g) : f = g :=
-- sigma.equal H !proof_irrel
definition slice_category (C : category ob) (c : ob) : category (slice_obs C c) :=
mk (λa b, slice_hom a b)
(λ a b c g f, sigma.mk (hom_hom g ∘ hom_hom f)
(show ob_hom c ∘ (hom_hom g ∘ hom_hom f) = ob_hom a,
proof
calc
ob_hom c ∘ (hom_hom g ∘ hom_hom f) = (ob_hom c ∘ hom_hom g) ∘ hom_hom f : !assoc
... = ob_hom b ∘ hom_hom f : {commute g}
... = ob_hom a : {commute f}
qed))
(λ a, sigma.mk id !id_right)
(λ a b c d h g f, dpair_eq !assoc !proof_irrel)
(λ a b f, sigma.equal !id_left !proof_irrel)
(λ a b f, sigma.equal !id_right !proof_irrel)
-- We use !proof_irrel instead of rfl, to give the unifier an easier time
-- definition slice_category {ob : Type} (C : category ob) (c : ob) : category (Σ(b : ob), hom b c)
-- :=
-- mk (λa b, Σ(g : hom (dpr1 a) (dpr1 b)), dpr2 b ∘ g = dpr2 a)
-- (λ a b c g f, dpair (dpr1 g ∘ dpr1 f)
-- (show dpr2 c ∘ (dpr1 g ∘ dpr1 f) = dpr2 a,
-- proof
-- calc
-- dpr2 c ∘ (dpr1 g ∘ dpr1 f) = (dpr2 c ∘ dpr1 g) ∘ dpr1 f : !assoc
-- ... = dpr2 b ∘ dpr1 f : {dpr2 g}
-- ... = dpr2 a : {dpr2 f}
-- qed))
-- (λ a, dpair id !id_right)
-- (λ a b c d h g f, dpair_eq !assoc !proof_irrel)
-- (λ a b f, sigma.equal !id_left !proof_irrel)
-- (λ a b f, sigma.equal !id_right !proof_irrel)
-- We use !proof_irrel instead of rfl, to give the unifier an easier time
definition Slice_category [reducible] (C : Category) (c : C) := Mk (slice_category C c)
open category.ops
attribute slice_category [instance]
variables {D : Category}
definition forgetful (x : D) : (Slice_category D x) ⇒ D :=
functor.mk (λ a, to_ob a)
(λ a b f, hom_hom f)
(λ a, rfl)
(λ a b c g f, rfl)
definition postcomposition_functor {x y : D} (h : x ⟶ y)
: Slice_category D x ⇒ Slice_category D y :=
functor.mk (λ a, sigma.mk (to_ob a) (h ∘ ob_hom a))
(λ a b f, sigma.mk (hom_hom f)
(calc
(h ∘ ob_hom b) ∘ hom_hom f = h ∘ (ob_hom b ∘ hom_hom f) : (assoc h (ob_hom b) (hom_hom f))⁻¹
... = h ∘ ob_hom a : congr_arg (λx, h ∘ x) (commute f)))
(λ a, rfl)
(λ a b c g f, dpair_eq rfl !proof_irrel)
-- -- in the following comment I tried to have (A = B) in the type of a == b, but that doesn't solve the problems
-- definition heq2 {A B : Type} (H : A = B) (a : A) (b : B) := a == b
-- definition heq2.intro {A B : Type} {a : A} {b : B} (H : a == b) : heq2 (heq.type_eq H) a b := H
-- definition heq2.elim {A B : Type} {a : A} {b : B} (H : A = B) (H2 : heq2 H a b) : a == b := H2
-- definition heq2.proof_irrel {A B : Prop} (a : A) (b : B) (H : A = B) : heq2 H a b :=
-- hproof_irrel H a b
-- theorem functor.mk_eq2 {C D : Category} {obF obG : C → D} {homF homG idF idG compF compG}
-- (Hob : ∀x, obF x = obG x)
-- (Hmor : ∀(a b : C) (f : a ⟶ b), heq2 (congr_arg (λ x, x a ⟶ x b) (funext Hob)) (homF a b f) (homG a b f))
-- : functor.mk obF homF idF compF = functor.mk obG homG idG compG :=
-- hddcongr_arg4 functor.mk
-- (funext Hob)
-- (hfunext (λ a, hfunext (λ b, hfunext (λ f, !Hmor))))
-- !proof_irrel
-- !proof_irrel
-- set_option pp.implicit true
-- set_option pp.coercions true
-- definition slice_functor : D ⇒ Category_of_categories :=
-- functor.mk (λ a, Category.mk (slice_obs D a) (slice_category D a))
-- (λ a b f, postcomposition_functor f)
-- (λ a, functor.mk_heq
-- (λx, sigma.equal rfl !id_left)
-- (λb c f, sigma.hequal sorry !heq.refl (hproof_irrel sorry _ _)))
-- (λ a b c g f, functor.mk_heq
-- (λx, sigma.equal (sorry ⬝ refl (dpr1 x)) sorry)
-- (λb c f, sorry))
--the error message generated here is really confusing: the type of the above refl should be
-- "@dpr1 D (λ (a_1 : D), a_1 ⟶ a) x = @dpr1 D (λ (a_1 : D), a_1 ⟶ c) x", but the second dpr1 is not even well-typed
end slice
-- section coslice
-- open sigma
-- definition coslice {ob : Type} (C : category ob) (c : ob) : category (Σ(b : ob), hom c b) :=
-- mk (λa b, Σ(g : hom (dpr1 a) (dpr1 b)), g ∘ dpr2 a = dpr2 b)
-- (λ a b c g f, dpair (dpr1 g ∘ dpr1 f)
-- (show (dpr1 g ∘ dpr1 f) ∘ dpr2 a = dpr2 c,
-- proof
-- calc
-- (dpr1 g ∘ dpr1 f) ∘ dpr2 a = dpr1 g ∘ (dpr1 f ∘ dpr2 a): symm !assoc
-- ... = dpr1 g ∘ dpr2 b : {dpr2 f}
-- ... = dpr2 c : {dpr2 g}
-- qed))
-- (λ a, dpair id !id_left)
-- (λ a b c d h g f, dpair_eq !assoc !proof_irrel)
-- (λ a b f, sigma.equal !id_left !proof_irrel)
-- (λ a b f, sigma.equal !id_right !proof_irrel)
-- -- theorem slice_coslice_opp {ob : Type} (C : category ob) (c : ob) :
-- -- coslice C c = opposite (slice (opposite C) c) :=
-- -- sorry
-- end coslice
section arrow
open sigma eq.ops
-- theorem concat_commutative_squares {ob : Type} {C : category ob} {a1 a2 a3 b1 b2 b3 : ob}
-- {f1 : a1 => b1} {f2 : a2 => b2} {f3 : a3 => b3} {g2 : a2 => a3} {g1 : a1 => a2}
-- {h2 : b2 => b3} {h1 : b1 => b2} (H1 : f2 ∘ g1 = h1 ∘ f1) (H2 : f3 ∘ g2 = h2 ∘ f2)
-- : f3 ∘ (g2 ∘ g1) = (h2 ∘ h1) ∘ f1 :=
-- calc
-- f3 ∘ (g2 ∘ g1) = (f3 ∘ g2) ∘ g1 : assoc
-- ... = (h2 ∘ f2) ∘ g1 : {H2}
-- ... = h2 ∘ (f2 ∘ g1) : symm assoc
-- ... = h2 ∘ (h1 ∘ f1) : {H1}
-- ... = (h2 ∘ h1) ∘ f1 : assoc
-- definition arrow {ob : Type} (C : category ob) : category (Σ(a b : ob), hom a b) :=
-- mk (λa b, Σ(g : hom (dpr1 a) (dpr1 b)) (h : hom (dpr2' a) (dpr2' b)),
-- dpr3 b ∘ g = h ∘ dpr3 a)
-- (λ a b c g f, dpair (dpr1 g ∘ dpr1 f) (dpair (dpr2' g ∘ dpr2' f) (concat_commutative_squares (dpr3 f) (dpr3 g))))
-- (λ a, dpair id (dpair id (id_right ⬝ (symm id_left))))
-- (λ a b c d h g f, dtrip_eq2 assoc assoc !proof_irrel)
-- (λ a b f, trip.equal2 id_left id_left !proof_irrel)
-- (λ a b f, trip.equal2 id_right id_right !proof_irrel)
-- make these definitions private?
variables {ob : Type} {C : category ob}
protected definition arrow_obs (ob : Type) (C : category ob) := Σ(a b : ob), hom a b
variables {a b : arrow_obs ob C}
protected definition src (a : arrow_obs ob C) : ob := sigma.pr1 a
protected definition dst (a : arrow_obs ob C) : ob := sigma.pr2' a
protected definition to_hom (a : arrow_obs ob C) : hom (src a) (dst a) := sigma.pr3 a
protected definition arrow_hom (a b : arrow_obs ob C) : Type :=
Σ (g : hom (src a) (src b)) (h : hom (dst a) (dst b)), to_hom b ∘ g = h ∘ to_hom a
protected definition hom_src (m : arrow_hom a b) : hom (src a) (src b) := sigma.pr1 m
protected definition hom_dst (m : arrow_hom a b) : hom (dst a) (dst b) := sigma.pr2' m
protected definition commute (m : arrow_hom a b) : to_hom b ∘ (hom_src m) = (hom_dst m) ∘ to_hom a
:= sigma.pr3 m
definition arrow (ob : Type) (C : category ob) : category (arrow_obs ob C) :=
mk (λa b, arrow_hom a b)
(λ a b c g f, sigma.mk (hom_src g ∘ hom_src f) (sigma.mk (hom_dst g ∘ hom_dst f)
(show to_hom c ∘ (hom_src g ∘ hom_src f) = (hom_dst g ∘ hom_dst f) ∘ to_hom a,
proof
calc
to_hom c ∘ (hom_src g ∘ hom_src f) = (to_hom c ∘ hom_src g) ∘ hom_src f : !assoc
... = (hom_dst g ∘ to_hom b) ∘ hom_src f : {commute g}
... = hom_dst g ∘ (to_hom b ∘ hom_src f) : symm !assoc
... = hom_dst g ∘ (hom_dst f ∘ to_hom a) : {commute f}
... = (hom_dst g ∘ hom_dst f) ∘ to_hom a : !assoc
qed)
))
(λ a, sigma.mk id (sigma.mk id (!id_right ⬝ (symm !id_left))))
(λ a b c d h g f, ndtrip_eq !assoc !assoc !proof_irrel)
(λ a b f, ndtrip_equal !id_left !id_left !proof_irrel)
(λ a b f, ndtrip_equal !id_right !id_right !proof_irrel)
end arrow
end category
-- definition foo : category (sorry) :=
-- mk (λa b, sorry)
-- (λ a b c g f, sorry)
-- (λ a, sorry)
-- (λ a b c d h g f, sorry)
-- (λ a b f, sorry)
-- (λ a b f, sorry)