lean2/src/library/blast/state.cpp

967 lines
31 KiB
C++

/*
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#include <vector>
#include <algorithm>
#include "library/trace.h"
#include "kernel/instantiate.h"
#include "kernel/abstract.h"
#include "kernel/for_each_fn.h"
#include "kernel/replace_fn.h"
#include "library/replace_visitor.h"
#include "library/blast/util.h"
#include "library/blast/trace.h"
#include "library/blast/blast.h"
#include "library/blast/state.h"
namespace lean {
namespace blast {
static name * g_prefix = nullptr;
static name * g_H = nullptr;
bool metavar_decl::contains_href(expr const & h) const {
return contains_href(href_index(h));
}
bool metavar_decl::restrict_context_using(metavar_decl const & other) {
buffer<unsigned> to_erase;
m_assumptions.for_each([&](unsigned hidx) {
if (!other.contains_href(hidx))
to_erase.push_back(hidx);
});
for (unsigned hidx : to_erase)
m_assumptions.erase(hidx);
return !to_erase.empty();
}
class extension_manager {
std::vector<branch_extension *> m_exts;
public:
~extension_manager() {
for (auto ext : m_exts)
ext->dec_ref();
m_exts.clear();
}
unsigned register_extension(branch_extension * ext) {
ext->inc_ref();
unsigned r = m_exts.size();
m_exts.push_back(ext);
return r;
}
bool has_ext(unsigned extid) const {
return extid < m_exts.size();
}
branch_extension * get_initial(unsigned extid) {
return m_exts[extid];
}
unsigned get_num_extensions() const {
return m_exts.size();
}
};
static extension_manager * g_extension_manager = nullptr;
static extension_manager & get_extension_manager() {
return *g_extension_manager;
}
unsigned register_branch_extension(branch_extension * initial) {
return get_extension_manager().register_extension(initial);
}
branch::branch() {
unsigned n = get_extension_manager().get_num_extensions();
m_extensions = new branch_extension*[n];
for (unsigned i = 0; i < n; i++)
m_extensions[i] = nullptr;
}
branch::~branch() {
unsigned n = get_extension_manager().get_num_extensions();
for (unsigned i = 0; i < n; i++) {
if (m_extensions[i])
m_extensions[i]->dec_ref();
}
delete m_extensions;
}
branch::branch(branch const & b):
m_hyp_decls(b.m_hyp_decls),
m_assumption(b.m_assumption),
m_active(b.m_active),
m_todo_queue(b.m_todo_queue),
m_forward_deps(b.m_forward_deps),
m_target(b.m_target),
m_target_deps(b.m_target_deps),
m_hyp_index(b.m_hyp_index) {
unsigned n = get_extension_manager().get_num_extensions();
m_extensions = new branch_extension*[n];
for (unsigned i = 0; i < n; i++) {
m_extensions[i] = b.m_extensions[i];
if (m_extensions[i])
m_extensions[i]->inc_ref();
}
}
branch::branch(branch && b):
m_hyp_decls(std::move(b.m_hyp_decls)),
m_assumption(std::move(b.m_assumption)),
m_active(std::move(b.m_active)),
m_todo_queue(std::move(b.m_todo_queue)),
m_forward_deps(std::move(b.m_forward_deps)),
m_target(std::move(b.m_target)),
m_target_deps(std::move(b.m_target_deps)),
m_hyp_index(std::move(b.m_hyp_index)) {
unsigned n = get_extension_manager().get_num_extensions();
m_extensions = new branch_extension*[n];
for (unsigned i = 0; i < n; i++) {
m_extensions[i] = b.m_extensions[i];
b.m_extensions[i] = nullptr;
}
}
void branch::swap(branch & b) {
std::swap(m_hyp_decls, b.m_hyp_decls);
std::swap(m_assumption, b.m_assumption);
std::swap(m_active, b.m_active);
std::swap(m_todo_queue, b.m_todo_queue);
std::swap(m_hyp_index, b.m_hyp_index);
std::swap(m_forward_deps, b.m_forward_deps);
std::swap(m_target, b.m_target);
std::swap(m_target_deps, b.m_target_deps);
std::swap(m_extensions, b.m_extensions);
}
branch & branch::operator=(branch s) {
swap(s);
return *this;
}
state::state() {}
metavar_decl const * state::get_metavar_decl(expr const & e) const {
return get_metavar_decl(mref_index(e));
}
expr state::mk_metavar(hypothesis_idx_set const & c, expr const & type) {
unsigned midx = mk_mref_idx();
m_metavar_decls.insert(midx, metavar_decl(c, type));
return blast::mk_mref(midx);
}
expr state::mk_metavar(hypothesis_idx_buffer const & b, expr const & type) {
hypothesis_idx_set ctx;
for (unsigned const & hidx : b)
ctx.insert(hidx);
return mk_metavar(ctx, type);
}
expr state::mk_metavar(expr const & type) {
return state::mk_metavar(get_assumptions(), type);
}
bool state::is_uref_assigned(level const & l) const {
return m_uassignment.contains(uref_index(l));
}
/* u := l */
void state::assign_uref(level const & u, level const & l) {
m_uassignment.insert(uref_index(u), l);
}
level const * state::get_uref_assignment(level const & l) const {
return m_uassignment.find(uref_index(l));
}
bool state::is_mref_assigned(expr const & e) const {
lean_assert(is_mref(e));
return m_eassignment.contains(mref_index(e));
}
expr const * state::get_mref_assignment(expr const & e) const {
return m_eassignment.find(mref_index(e));
}
void state::assign_mref(expr const & m, expr const & e) {
m_eassignment.insert(mref_index(m), e);
}
void state::restrict_mref_context_using(expr const & mref1, expr const & mref2) {
metavar_decl const * d1 = m_metavar_decls.find(mref_index(mref1));
metavar_decl const * d2 = m_metavar_decls.find(mref_index(mref2));
lean_assert(d1);
lean_assert(d2);
metavar_decl new_d1(*d1);
if (new_d1.restrict_context_using(*d2))
m_metavar_decls.insert(mref_index(mref1), new_d1);
}
hypothesis const & state::get_hypothesis_decl(expr const & h) const {
return get_hypothesis_decl(href_index(h));
}
expr state::to_kernel_expr(expr const & e, hypothesis_idx_map<expr> & hidx2local, metavar_idx_map<expr> & midx2meta) const {
return lean::replace(e, [&](expr const & e) {
if (is_href(e)) {
unsigned hidx = href_index(e);
if (auto r = hidx2local.find(hidx)) {
return some_expr(*r);
} else {
hypothesis const & h = get_hypothesis_decl(hidx);
// after we add support for let-decls in goals, we must convert back h->get_value() if it is available
expr new_h = lean::mk_local(name(name("H"), hidx),
h.get_name(),
to_kernel_expr(h.get_type(), hidx2local, midx2meta),
binder_info());
hidx2local.insert(hidx, new_h);
return some_expr(new_h);
}
} else if (is_mref(e)) {
unsigned midx = mref_index(e);
if (auto r = midx2meta.find(midx)) {
return some_expr(*r);
} else {
metavar_decl const * decl = m_metavar_decls.find(midx);
lean_assert(decl);
buffer<expr> ctx;
decl->get_assumptions().for_each([&](unsigned hidx) {
if (auto h = hidx2local.find(hidx))
ctx.push_back(*h);
else
ctx.push_back(to_kernel_expr(mk_href(hidx), hidx2local, midx2meta));
});
expr type = to_kernel_expr(decl->get_type(), hidx2local, midx2meta);
expr new_type = Pi(ctx, type);
expr new_mvar = lean::mk_metavar(name(name("M"), mref_index(e)), new_type);
expr new_meta = mk_app(new_mvar, ctx);
midx2meta.insert(mref_index(e), new_meta);
return some_expr(new_meta);
}
} else {
return none_expr();
}
});
}
expr state::to_kernel_expr(expr const & e) const {
hypothesis_idx_map<expr> hidx2local;
metavar_idx_map<expr> midx2meta;
return to_kernel_expr(e, hidx2local, midx2meta);
}
static name mk_name(name const & n, name_set & already_used) {
name curr = n;
unsigned idx = 1;
while (true) {
if (!already_used.contains(curr)) {
already_used.insert(curr);
return curr;
}
curr = n.append_after(idx);
idx++;
}
}
goal state::to_goal(bool include_inactive) const {
hypothesis_idx_map<expr> hidx2local;
metavar_idx_map<expr> midx2meta;
hypothesis_idx_buffer hidxs;
get_sorted_hypotheses(hidxs);
buffer<expr> hyps;
name_set already_used;
for (unsigned hidx : hidxs) {
if (!include_inactive && !is_active(hidx)) {
break; // inactive hypotheses occur after active ones after sorting
}
hypothesis const & h = get_hypothesis_decl(hidx);
// after we add support for let-decls in goals, we must convert back h->get_value() if it is available
expr new_h = lean::mk_local(name(name("H"), hidx),
mk_name(h.get_name(), already_used),
to_kernel_expr(h.get_type(), hidx2local, midx2meta),
binder_info());
hidx2local.insert(hidx, new_h);
hyps.push_back(new_h);
}
expr new_target = to_kernel_expr(get_target(), hidx2local, midx2meta);
expr new_mvar_type = Pi(hyps, new_target);
expr new_mvar = lean::mk_metavar(name("M"), new_mvar_type);
expr new_meta = mk_app(new_mvar, hyps);
return goal(new_meta, new_target);
}
void state::display_active(std::ostream & out) const {
out << "active := {";
bool first = true;
m_branch.m_active.for_each([&](hypothesis_idx hidx) {
if (first) first = false; else out << ", ";
out << get_hypothesis_decl(hidx).get_name();
});
out << "}\n";
}
void state::display(io_state_stream const & ios, bool include_inactive) const {
ios << mk_pair(to_goal(include_inactive).pp(ios.get_formatter()), ios.get_options()) << "\n";
}
void state::display(environment const & env, io_state const & ios, bool include_inactive) const {
formatter fmt = ios.get_formatter_factory()(env, ios.get_options());
auto & out = ios.get_diagnostic_channel();
out << mk_pair(to_goal(include_inactive).pp(fmt), ios.get_options()) << "\n";
}
bool state::has_assigned_uref(level const & l) const {
if (!has_meta(l))
return false;
if (m_uassignment.empty())
return false;
bool found = false;
for_each(l, [&](level const & l) {
if (!has_meta(l))
return false; // stop search
if (found)
return false; // stop search
if (is_uref(l) && is_uref_assigned(l)) {
found = true;
return false; // stop search
}
return true; // continue search
});
return found;
}
bool state::has_assigned_uref(levels const & ls) const {
for (level const & l : ls) {
if (has_assigned_uref(l))
return true;
}
return false;
}
bool state::has_assigned_uref_mref(expr const & e) const {
if (!has_mref(e) && !has_univ_metavar(e))
return false;
if (m_eassignment.empty() && m_uassignment.empty())
return false;
bool found = false;
for_each(e, [&](expr const & e, unsigned) {
if (!has_mref(e) && !has_univ_metavar(e))
return false; // stop search
if (found)
return false; // stop search
if ((is_mref(e) && is_mref_assigned(e)) ||
(is_constant(e) && has_assigned_uref(const_levels(e))) ||
(is_sort(e) && has_assigned_uref(sort_level(e)))) {
found = true;
return false; // stop search
}
return true; // continue search
});
return found;
}
level state::instantiate_urefs(level const & l) {
if (!has_assigned_uref(l))
return l;
return replace(l, [&](level const & l) {
if (!has_meta(l)) {
return some_level(l);
} else if (is_uref(l)) {
level const * v1 = get_uref_assignment(l);
if (v1) {
level v2 = instantiate_urefs(*v1);
if (*v1 != v2) {
assign_uref(l, v2);
return some_level(v2);
} else {
return some_level(*v1);
}
}
}
return none_level();
});
}
struct instantiate_urefs_mrefs_fn : public replace_visitor {
state & m_state;
level visit_level(level const & l) {
return m_state.instantiate_urefs(l);
}
levels visit_levels(levels const & ls) {
return map_reuse(ls,
[&](level const & l) { return visit_level(l); },
[](level const & l1, level const & l2) { return is_eqp(l1, l2); });
}
virtual expr visit_sort(expr const & s) {
return update_sort(s, visit_level(sort_level(s)));
}
virtual expr visit_constant(expr const & c) {
return update_constant(c, visit_levels(const_levels(c)));
}
virtual expr visit_local(expr const & e) {
if (is_href(e)) {
return e;
} else {
return update_mlocal(e, visit(mlocal_type(e)));
}
}
virtual expr visit_meta(expr const & m) {
lean_assert(is_mref(m));
if (auto v1 = m_state.get_mref_assignment(m)) {
if (!has_mref(*v1)) {
return *v1;
} else {
expr v2 = m_state.instantiate_urefs_mrefs(*v1);
if (v2 != *v1)
m_state.assign_mref(m, v2);
return v2;
}
} else {
return m;
}
}
virtual expr visit_app(expr const & e) {
buffer<expr> args;
expr const & f = get_app_rev_args(e, args);
if (is_mref(f)) {
if (auto v = m_state.get_mref_assignment(f)) {
expr new_app = apply_beta(*v, args.size(), args.data());
if (has_mref(new_app))
return visit(new_app);
else
return new_app;
}
}
expr new_f = visit(f);
buffer<expr> new_args;
bool modified = !is_eqp(new_f, f);
for (expr const & arg : args) {
expr new_arg = visit(arg);
if (!is_eqp(arg, new_arg))
modified = true;
new_args.push_back(new_arg);
}
if (!modified)
return e;
else
return mk_rev_app(new_f, new_args, e.get_tag());
}
virtual expr visit_macro(expr const & e) {
lean_assert(is_macro(e));
buffer<expr> new_args;
for (unsigned i = 0; i < macro_num_args(e); i++)
new_args.push_back(visit(macro_arg(e, i)));
return update_macro(e, new_args.size(), new_args.data());
}
virtual expr visit(expr const & e) {
if (!has_mref(e) && !has_univ_metavar(e))
return e;
else
return replace_visitor::visit(e);
}
public:
instantiate_urefs_mrefs_fn(state & s):m_state(s) {}
expr operator()(expr const & e) { return visit(e); }
};
expr state::instantiate_urefs_mrefs(expr const & e) {
if (!has_assigned_uref_mref(e))
return e;
else
return instantiate_urefs_mrefs_fn(*this)(e);
}
#ifdef LEAN_DEBUG
bool state::check_hypothesis(expr const & e, unsigned hidx, hypothesis const & h) const {
lean_assert(closed(e));
for_each(e, [&](expr const & n, unsigned) {
if (is_href(n)) {
lean_assert(h.depends_on(n));
lean_assert(hidx_depends_on(hidx, href_index(n)));
}
return true;
});
return true;
}
bool state::check_hypothesis(unsigned hidx, hypothesis const & h) const {
if (!h.is_dead()) {
lean_assert(check_hypothesis(h.get_type(), hidx, h));
}
return true;
}
bool state::check_target() const {
lean_assert(closed(get_target()));
for_each(get_target(), [&](expr const & n, unsigned) {
if (is_href(n)) {
lean_assert(target_depends_on(n));
}
return true;
});
return true;
}
bool state::check_invariant() const {
for_each_hypothesis([&](unsigned hidx, hypothesis const & h) {
lean_assert(check_hypothesis(hidx, h));
});
lean_assert(check_target());
return true;
}
#endif
struct hypothesis_dep_depth_lt {
state const & m_state;
hypothesis_dep_depth_lt(state const & s): m_state(s) {}
bool operator()(unsigned hidx1, unsigned hidx2) const {
hypothesis const & h1 = m_state.get_hypothesis_decl(hidx1);
hypothesis const & h2 = m_state.get_hypothesis_decl(hidx2);
bool act1 = true; // m_state.is_active(hidx1);
bool act2 = true; // m_state.is_active(hidx2);
if (act1 != act2) {
return act1 && !act2; // active hypotheses should occur before non-active ones
} else if (act1) {
lean_assert(act1 && act2);
if (h1.get_dep_depth() != h2.get_dep_depth())
return h1.get_dep_depth() < h2.get_dep_depth();
else
return hidx1 < hidx2;
} else {
// for inactive hypotheses we just compare hidx's
lean_assert(!act1 && !act2);
return hidx1 < hidx2;
}
}
};
void state::get_sorted_hypotheses(hypothesis_idx_buffer & r) const {
m_branch.m_hyp_decls.for_each([&](unsigned hidx, hypothesis const & h) {
if (!h.is_dead())
r.push_back(hidx);
});
sort_hypotheses(r);
}
void state::sort_hypotheses(hypothesis_idx_buffer & r) const {
std::sort(r.begin(), r.end(), hypothesis_dep_depth_lt(*this));
}
void state::sort_hypotheses(hypothesis_idx_buffer_set & r) const {
std::sort(r.m_buffer.begin(), r.m_buffer.end(), hypothesis_dep_depth_lt(*this));
}
void state::to_hrefs(hypothesis_idx_buffer const & hidxs, buffer<expr> & r) const {
for (hypothesis_idx hidx : hidxs)
r.push_back(get_hypothesis_decl(hidx).get_self());
}
void state::add_forward_dep(unsigned hidx_user, unsigned hidx_provider) {
if (auto s = m_branch.m_forward_deps.find(hidx_provider)) {
if (!s->contains(hidx_user)) {
hypothesis_idx_set new_s(*s);
new_s.insert(hidx_user);
m_branch.m_forward_deps.insert(hidx_provider, new_s);
}
} else {
hypothesis_idx_set new_s;
new_s.insert(hidx_user);
m_branch.m_forward_deps.insert(hidx_provider, new_s);
}
}
void state::del_forward_dep(unsigned hidx_user, unsigned hidx_provider) {
auto s = m_branch.m_forward_deps.find(hidx_provider);
lean_assert(s);
lean_assert(s->contains(hidx_user));
hypothesis_idx_set new_s(*s);
new_s.erase(hidx_user);
m_branch.m_forward_deps.insert(hidx_provider, new_s);
}
void state::add_deps(expr const & e, hypothesis & h_user, unsigned hidx_user) {
lean_assert(!h_user.is_dead());
if (!has_href(e) && !has_mref(e))
return; // nothing to be done
for_each(e, [&](expr const & l, unsigned) {
if (!has_href(l) && !has_mref(l)) {
return false;
} else if (is_href(l)) {
unsigned hidx_provider = href_index(l);
hypothesis const & h_provider = get_hypothesis_decl(hidx_provider);
if (h_user.m_dep_depth <= h_provider.m_dep_depth)
h_user.m_dep_depth = h_provider.m_dep_depth + 1;
if (!h_user.m_deps.contains(hidx_provider)) {
h_user.m_deps.insert(hidx_provider);
add_forward_dep(hidx_user, hidx_provider);
}
return false;
} else {
return true;
}
});
}
void state::add_deps(hypothesis & h_user, unsigned hidx_user) {
add_deps(h_user.m_type, h_user, hidx_user);
}
double state::compute_weight(unsigned hidx, expr const & /* type */) {
// TODO(Leo): use heuristics and machine learning for computing the weight of a new hypothesis
// This method should not be here.
return 1.0 / (static_cast<double>(hidx) + 1.0);
}
void state::add_todo_queue(hypothesis_idx hidx) {
double w = compute_weight(hidx, get_hypothesis_decl(hidx).get_type());
m_branch.m_todo_queue.insert(w, hidx);
}
expr state::mk_hypothesis(unsigned new_hidx, name const & n, expr const & type, optional<expr> const & value) {
hypothesis new_h;
expr r = mk_href(new_hidx);
new_h.m_name = n;
new_h.m_type = type;
new_h.m_value = value;
new_h.m_self = r;
new_h.m_proof_depth = m_proof_depth;
add_deps(new_h, new_hidx);
m_branch.m_hyp_decls.insert(new_hidx, new_h);
if (new_h.is_assumption())
m_branch.m_assumption.insert(new_hidx);
add_todo_queue(new_hidx);
return r;
}
expr state::mk_hypothesis(name const & n, expr const & type, expr const & value) {
return mk_hypothesis(mk_href_idx(), n, type, some_expr(value));
}
expr state::mk_hypothesis(expr const & type, expr const & value) {
unsigned hidx = mk_href_idx();
return mk_hypothesis(hidx, name(*g_H, hidx), type, some_expr(value));
}
expr state::mk_hypothesis(name const & n, expr const & type) {
return mk_hypothesis(mk_href_idx(), n, type, none_expr());
}
expr state::mk_hypothesis(expr const & type) {
unsigned hidx = mk_href_idx();
return mk_hypothesis(hidx, name(*g_H, hidx), type, none_expr());
}
void state::del_hypotheses(buffer<hypothesis_idx> const & to_delete, hypothesis_idx_set const & to_delete_set) {
for (hypothesis_idx h : to_delete) {
hypothesis h_decl = get_hypothesis_decl(h);
if (m_branch.m_active.contains(h)) {
m_branch.m_active.erase(h);
remove_from_indices(h_decl, h);
}
m_branch.m_assumption.erase(h);
m_branch.m_forward_deps.erase(h);
h_decl.m_deps.for_each([&](hypothesis_idx h_dep) {
if (to_delete_set.contains(h_dep)) {
// we don't need to update forward deps for h_dep since
// it will also be deleted.
return;
}
del_forward_dep(h, h_dep);
});
h_decl.m_deps = hypothesis_idx_set();
h_decl.m_dead = true;
m_branch.m_hyp_decls.insert(h, h_decl);
// Remark: we don't remove h from m_todo_queue. It is too expensive.
// So, the method activate_hypothesis MUST check whether the candidate
// hypothesis is dead or not.
}
}
void state::collect_forward_deps(hypothesis_idx hidx, hypothesis_idx_buffer_set & result) {
hypothesis_idx_buffer const & b = result.as_buffer();
unsigned qhead = b.size();
while (true) {
hypothesis_idx_set s = get_direct_forward_deps(hidx);
s.for_each([&](hypothesis_idx h_dep) { result.insert(h_dep); });
if (qhead == b.size())
return;
hidx = b[qhead];
qhead++;
}
}
/* Return true iff the target type does not depend on any of the hypotheses in to_delete */
bool state::safe_to_delete(buffer<hypothesis_idx> const & to_delete) {
for (hypothesis_idx h : to_delete) {
if (m_branch.m_target_deps.contains(h)) {
// h cannot be deleted since the target type
// depends on it.
return false;
}
}
return true;
}
bool state::del_hypotheses(buffer<hypothesis_idx> const & hs) {
hypothesis_idx_buffer_set to_delete;
for (hypothesis_idx hidx : hs) {
to_delete.insert(hidx);
collect_forward_deps(hidx, to_delete);
}
if (!safe_to_delete(to_delete.as_buffer()))
return false;
del_hypotheses(to_delete.as_buffer(), to_delete.as_set());
return true;
}
bool state::del_hypothesis(hypothesis_idx hidx) {
hypothesis_idx_buffer_set to_delete;
to_delete.insert(hidx);
collect_forward_deps(hidx, to_delete);
if (!safe_to_delete(to_delete.as_buffer()))
return false;
del_hypotheses(to_delete.as_buffer(), to_delete.as_set());
return true;
}
hypothesis_idx_set state::get_direct_forward_deps(hypothesis_idx hidx) const {
if (auto r = m_branch.m_forward_deps.find(hidx))
return *r;
else
return hypothesis_idx_set();
}
optional<hypothesis_idx> state::contains_hypothesis(expr const & type) const {
optional<hypothesis_idx> r;
find_hypotheses(type, [&](hypothesis_idx hidx) {
hypothesis const & h = get_hypothesis_decl(hidx);
if (h.get_type() == type) {
r = hidx;
return false; // stop search
} else {
return true; // continue search
}
});
return r;
}
branch_extension * state::get_extension_core(unsigned i) {
branch_extension * ext = m_branch.m_extensions[i];
if (ext && ext->get_rc() > 1) {
branch_extension * new_ext = ext->clone();
new_ext->inc_ref();
ext->dec_ref();
m_branch.m_extensions[i] = new_ext;
return new_ext;
}
return ext;
}
branch_extension & state::get_extension(unsigned extid) {
lean_assert(extid < get_extension_manager().get_num_extensions());
if (!m_branch.m_extensions[extid]) {
/* lazy initialization */
branch_extension * ext = get_extension_manager().get_initial(extid)->clone();
ext->inc_ref();
m_branch.m_extensions[extid] = ext;
lean_assert(ext->get_rc() == 1);
ext->initialized();
ext->target_updated();
m_branch.m_active.for_each([&](hypothesis_idx hidx) {
hypothesis const & h = get_hypothesis_decl(hidx);
ext->hypothesis_activated(h, hidx);
});
return *ext;
} else {
branch_extension * ext = get_extension_core(extid);
lean_assert(ext);
return *ext;
}
}
void state::deactivate_all() {
m_branch.m_hyp_index = discr_tree();
unsigned n = get_extension_manager().get_num_extensions();
for (unsigned i = 0; i < n; i++) {
if (m_branch.m_extensions[i]) {
m_branch.m_extensions[i]->dec_ref();
m_branch.m_extensions[i] = nullptr;
}
}
m_branch.m_active.for_each([&](hypothesis_idx hidx) {
add_todo_queue(hidx);
});
m_branch.m_active = hypothesis_idx_set();
}
static expr get_key_for(expr type) {
while (is_not(type, type)) {}
return type;
}
void state::update_indices(hypothesis_idx hidx) {
hypothesis const & h = get_hypothesis_decl(hidx);
unsigned n = get_extension_manager().get_num_extensions();
for (unsigned i = 0; i < n; i++) {
branch_extension * ext = get_extension_core(i);
if (ext) ext->hypothesis_activated(h, hidx);
}
m_branch.m_hyp_index.insert(get_key_for(h.get_type()), h.get_self());
}
void state::remove_from_indices(hypothesis const & h, hypothesis_idx hidx) {
unsigned n = get_extension_manager().get_num_extensions();
for (unsigned i = 0; i < n; i++) {
branch_extension * ext = get_extension_core(i);
if (ext) ext->hypothesis_deleted(h, hidx);
}
m_branch.m_hyp_index.erase(get_key_for(h.get_type()), h.get_self());
}
void state::find_hypotheses(expr const & e, std::function<bool(hypothesis_idx)> const & fn) const { // NOLINT
m_branch.m_hyp_index.find(get_key_for(e), [&](expr const & h) { return fn(href_index(h)); });
}
optional<unsigned> state::select_hypothesis_to_activate() {
while (true) {
if (m_branch.m_todo_queue.empty())
return optional<unsigned>();
unsigned hidx = m_branch.m_todo_queue.erase_min();
hypothesis const & h_decl = get_hypothesis_decl(hidx);
if (!h_decl.is_dead()) {
return optional<unsigned>(hidx);
}
}
}
void state::activate_hypothesis(hypothesis_idx hidx) {
lean_trace_search(
hypothesis const & h = get_hypothesis_decl(hidx);
tout() << "activate " << h.get_name() << " : " << ppb(h.get_type()) << "\n";);
lean_assert(!get_hypothesis_decl(hidx).is_dead());
m_branch.m_active.insert(hidx);
update_indices(hidx);
}
bool state::hidx_depends_on(unsigned hidx_user, unsigned hidx_provider) const {
if (auto s = m_branch.m_forward_deps.find(hidx_provider)) {
return s->contains(hidx_user);
} else {
return false;
}
}
void state::set_target(expr const & t) {
m_branch.m_target = t;
m_branch.m_target_deps.clear();
if (has_href(t) || has_mref(t)) {
for_each(t, [&](expr const & e, unsigned) {
if (!has_href(e) && !has_mref(e)) {
return false;
} else if (is_href(e)) {
m_branch.m_target_deps.insert(href_index(e));
return false;
} else {
return true;
}
});
}
unsigned n = get_extension_manager().get_num_extensions();
for (unsigned i = 0; i < n; i++) {
branch_extension * ext = get_extension_core(i);
if (ext) ext->target_updated();
}
}
bool state::target_depends_on(expr const & h) const {
return target_depends_on(href_index(h));
}
struct expand_hrefs_fn : public replace_visitor {
state const & m_state;
list<expr> const & m_hrefs;
expand_hrefs_fn(state const & s, list<expr> const & hrefs):
m_state(s), m_hrefs(hrefs) {}
virtual expr visit_local(expr const & e) {
if (is_href(e) && std::find(m_hrefs.begin(), m_hrefs.end(), e) != m_hrefs.end()) {
hypothesis const & h = m_state.get_hypothesis_decl(e);
if (h.get_value()) {
return visit(*h.get_value());
}
}
return replace_visitor::visit_local(e);
}
};
expr state::expand_hrefs(expr const & e, list<expr> const & hrefs) const {
return expand_hrefs_fn(*this, hrefs)(e);
}
auto state::save_assignment() -> assignment_snapshot {
return assignment_snapshot(m_uassignment, m_metavar_decls, m_eassignment);
}
void state::restore_assignment(assignment_snapshot const & s) {
std::tie(m_uassignment, m_metavar_decls, m_eassignment) = s;
}
expr state::mk_binding(bool is_lambda, unsigned num, expr const * hrefs, expr const & b) const {
expr r = abstract_locals(b, num, hrefs);
unsigned i = num;
while (i > 0) {
--i;
expr const & h = hrefs[i];
lean_assert(is_href(h));
hypothesis const & hdecl = get_hypothesis_decl(h);
expr t = abstract_locals(hdecl.get_type(), i, hrefs);
if (is_lambda)
r = ::lean::mk_lambda(hdecl.get_name(), t, r);
else
r = ::lean::mk_pi(hdecl.get_name(), t, r);
}
return r;
}
expr state::mk_lambda(list<expr> const & hrefs, expr const & b) const {
buffer<expr> tmp;
to_buffer(hrefs, tmp);
return mk_lambda(tmp, b);
}
expr state::mk_pi(list<expr> const & hrefs, expr const & b) const {
buffer<expr> tmp;
to_buffer(hrefs, tmp);
return mk_pi(tmp, b);
}
void initialize_state() {
g_extension_manager = new extension_manager();
g_prefix = new name(name::mk_internal_unique_name());
g_H = new name("H");
}
void finalize_state() {
delete g_prefix;
delete g_H;
delete g_extension_manager;
}
}}