lean2/library/hott/algebra/category/basic.lean
2014-12-05 22:21:12 -08:00

32 lines
1.1 KiB
Text

-- Copyright (c) 2014 Jakob von Raumer. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Jakob von Raumer
import ..precategory.basic ..precategory.morphism
import hott.equiv hott.trunc
open precategory morphism is_equiv path truncation nat sigma sigma.ops
-- A category is a precategory extended by a witness,
-- that the function assigning to each isomorphism a path,
-- is an equivalecnce.
structure category [class] (ob : Type) extends (precategory ob) :=
(iso_of_path_equiv : Π {a b : ob}, is_equiv (@iso_of_path ob (precategory.mk hom _ comp ID assoc id_left id_right) a b))
namespace category
variables {ob : Type} (C : category ob) {a b : ob}
include C
-- Make iso_of_path_equiv a class instance
-- TODO: Unsafe class instance?
instance [persistent] iso_of_path_equiv
definition path_of_iso {a b : ob} : (Σ (f : hom a b), is_iso f) → a ≈ b :=
iso_of_path⁻¹
definition ob_1_type : is_trunc 1 ob := sorry
end category
-- Bundled version of categories
inductive Category : Type := mk : Π (ob : Type), category ob → Category