lean2/library/theories/analysis/real_limit.lean

756 lines
29 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Robert Y. Lewis
Instantiates the reals as a Banach space.
-/
import .metric_space data.real.complete data.set .normed_space
open real classical analysis nat topology
noncomputable theory
/- sup and inf -/
-- Expresses completeness, sup, and inf in a manner that is less constructive, but more convenient,
-- than the way it is done in data.real.complete.
-- Issue: real.sup and real.inf conflict with sup and inf in lattice.
-- Perhaps put algebra sup and inf into a namespace?
namespace real
open set
private definition exists_is_sup {X : set } (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b)) :
∃ y, is_sup X y :=
let x := some (and.left H), b := some (and.right H) in
exists_is_sup_of_inh_of_bdd X x (some_spec (and.left H)) b (some_spec (and.right H))
private definition sup_aux {X : set } (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b)) :=
some (exists_is_sup H)
private definition sup_aux_spec {X : set } (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b)) :
is_sup X (sup_aux H) :=
some_spec (exists_is_sup H)
definition sup (X : set ) : :=
if H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b) then sup_aux H else 0
proposition le_sup {x : } {X : set } (Hx : x ∈ X) {b : } (Hb : ∀ x, x ∈ X → x ≤ b) :
x ≤ sup X :=
have H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b),
from and.intro (exists.intro x Hx) (exists.intro b Hb),
by rewrite [↑sup, dif_pos H]; exact and.left (sup_aux_spec H) x Hx
proposition sup_le {X : set } (HX : ∃ x, x ∈ X) {b : } (Hb : ∀ x, x ∈ X → x ≤ b) :
sup X ≤ b :=
have H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b),
from and.intro HX (exists.intro b Hb),
by rewrite [↑sup, dif_pos H]; exact and.right (sup_aux_spec H) b Hb
proposition exists_mem_and_lt_of_lt_sup {X : set } (HX : ∃ x, x ∈ X) {b : } (Hb : b < sup X) :
∃ x, x ∈ X ∧ b < x :=
have ¬ ∀ x, x ∈ X → x ≤ b, from assume H, not_le_of_gt Hb (sup_le HX H),
obtain x (Hx : ¬ (x ∈ X → x ≤ b)), from exists_not_of_not_forall this,
exists.intro x
(have x ∈ X ∧ ¬ x ≤ b, by rewrite [-not_implies_iff_and_not]; apply Hx,
and.intro (and.left this) (lt_of_not_ge (and.right this)))
private definition exists_is_inf {X : set } (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x)) :
∃ y, is_inf X y :=
let x := some (and.left H), b := some (and.right H) in
exists_is_inf_of_inh_of_bdd X x (some_spec (and.left H)) b (some_spec (and.right H))
private definition inf_aux {X : set } (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x)) :=
some (exists_is_inf H)
private definition inf_aux_spec {X : set } (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x)) :
is_inf X (inf_aux H) :=
some_spec (exists_is_inf H)
definition inf (X : set ) : :=
if H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x) then inf_aux H else 0
proposition inf_le {x : } {X : set } (Hx : x ∈ X) {b : } (Hb : ∀ x, x ∈ X → b ≤ x) :
inf X ≤ x :=
have H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x),
from and.intro (exists.intro x Hx) (exists.intro b Hb),
by rewrite [↑inf, dif_pos H]; exact and.left (inf_aux_spec H) x Hx
proposition le_inf {X : set } (HX : ∃ x, x ∈ X) {b : } (Hb : ∀ x, x ∈ X → b ≤ x) :
b ≤ inf X :=
have H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x),
from and.intro HX (exists.intro b Hb),
by rewrite [↑inf, dif_pos H]; exact and.right (inf_aux_spec H) b Hb
proposition exists_mem_and_lt_of_inf_lt {X : set } (HX : ∃ x, x ∈ X) {b : } (Hb : inf X < b) :
∃ x, x ∈ X ∧ x < b :=
have ¬ ∀ x, x ∈ X → b ≤ x, from assume H, not_le_of_gt Hb (le_inf HX H),
obtain x (Hx : ¬ (x ∈ X → b ≤ x)), from exists_not_of_not_forall this,
exists.intro x
(have x ∈ X ∧ ¬ b ≤ x, by rewrite [-not_implies_iff_and_not]; apply Hx,
and.intro (and.left this) (lt_of_not_ge (and.right this)))
section
local attribute mem [reducible]
-- TODO: is there a better place to put this?
proposition image_neg_eq (X : set ) : (λ x, -x) ' X = {x | -x ∈ X} :=
set.ext (take x, iff.intro
(assume H, obtain y [(Hy₁ : y ∈ X) (Hy₂ : -y = x)], from H,
show -x ∈ X, by rewrite [-Hy₂, neg_neg]; exact Hy₁)
(assume H : -x ∈ X, exists.intro (-x) (and.intro H !neg_neg)))
proposition sup_neg {X : set } (nonempty_X : ∃ x, x ∈ X) {b : } (Hb : ∀ x, x ∈ X → b ≤ x) :
sup {x | -x ∈ X} = - inf X :=
let negX := {x | -x ∈ X} in
have nonempty_negX : ∃ x, x ∈ negX, from
obtain x Hx, from nonempty_X,
have -(-x) ∈ X,
by rewrite neg_neg; apply Hx,
exists.intro (-x) this,
have H₁ : ∀ x, x ∈ negX → x ≤ - inf X, from
take x,
assume H,
have inf X ≤ -x,
from inf_le H Hb,
show x ≤ - inf X,
from le_neg_of_le_neg this,
have H₂ : ∀ x, x ∈ X → -sup negX ≤ x, from
take x,
assume H,
have -(-x) ∈ X, by rewrite neg_neg; apply H,
have -x ≤ sup negX, from le_sup this H₁,
show -sup negX ≤ x,
from !neg_le_of_neg_le this,
eq_of_le_of_ge
(show sup negX ≤ - inf X,
from sup_le nonempty_negX H₁)
(show -inf X ≤ sup negX,
from !neg_le_of_neg_le (le_inf nonempty_X H₂))
proposition inf_neg {X : set } (nonempty_X : ∃ x, x ∈ X) {b : } (Hb : ∀ x, x ∈ X → x ≤ b) :
inf {x | -x ∈ X} = - sup X :=
let negX := {x | -x ∈ X} in
have nonempty_negX : ∃ x, x ∈ negX, from
obtain x Hx, from nonempty_X,
have -(-x) ∈ X,
by rewrite neg_neg; apply Hx,
exists.intro (-x) this,
have Hb' : ∀ x, x ∈ negX → -b ≤ x,
from take x, assume H, !neg_le_of_neg_le (Hb _ H),
have HX : X = {x | -x ∈ negX},
from set.ext (take x, by rewrite [↑set_of, ↑mem, +neg_neg]),
show inf {x | -x ∈ X} = - sup X,
by rewrite [HX at {2}, sup_neg nonempty_negX Hb', neg_neg]
end
end real
/- the reals form a complete metric space -/
namespace analysis
theorem dist_eq_abs (x y : real) : dist x y = abs (x - y) := rfl
namespace real
proposition approaches_at_infty_intro {X : } {y : }
(H : ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : , ∀ {n}, n ≥ N → abs (X n - y) < ε) :
(X ⟶ y [at ∞]) := metric_space.approaches_at_infty_intro H
proposition approaches_at_infty_dest {X : } {y : } (H : X ⟶ y [at ∞]) :
∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : , ∀ {n}, n ≥ N → abs (X n - y) < ε := metric_space.approaches_at_infty_dest H
proposition approaches_at_infty_intro' {X : } {y : }
(H : ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : , ∀ {n}, n ≥ N → abs (X n - y) ≤ ε) :
(X ⟶ y [at ∞]) :=
approaches_at_infty_intro' H
end real
open pnat subtype
local postfix ⁻¹ := pnat.inv
private definition pnat.succ (n : ) : + := tag (succ n) !succ_pos
private definition r_seq_of (X : ) : r_seq := λ n, X (elt_of n)
private lemma rate_of_cauchy_aux {X : } (H : cauchy X) :
∀ k : +, ∃ N : +, ∀ m n : +,
m ≥ N → n ≥ N → abs (X (elt_of m) - X (elt_of n)) ≤ of_rat k⁻¹ :=
take k : +,
have H1 : (k⁻¹ >[rat] (rat.of_num 0)), from !pnat.inv_pos,
have H2 : (of_rat k⁻¹ > of_rat (rat.of_num 0)), from !of_rat_lt_of_rat_of_lt H1,
obtain (N : ) (H : ∀ m n, m ≥ N → n ≥ N → abs (X m - X n) < of_rat k⁻¹), from H _ H2,
exists.intro (pnat.succ N)
(take m n : +,
assume Hm : m ≥ (pnat.succ N),
assume Hn : n ≥ (pnat.succ N),
have Hm' : elt_of m ≥ N, begin apply le.trans, apply le_succ, apply Hm end,
have Hn' : elt_of n ≥ N, begin apply le.trans, apply le_succ, apply Hn end,
show abs (X (elt_of m) - X (elt_of n)) ≤ of_rat k⁻¹, from le_of_lt (H _ _ Hm' Hn'))
private definition rate_of_cauchy {X : } (H : cauchy X) (k : +) : + :=
some (rate_of_cauchy_aux H k)
private lemma cauchy_with_rate_of_cauchy {X : } (H : cauchy X) :
cauchy_with_rate (r_seq_of X) (rate_of_cauchy H) :=
take k : +,
some_spec (rate_of_cauchy_aux H k)
private lemma converges_to_with_rate_of_cauchy {X : } (H : cauchy X) :
∃ l Nb, converges_to_with_rate (r_seq_of X) l Nb :=
begin
apply exists.intro,
apply exists.intro,
apply converges_to_with_rate_of_cauchy_with_rate,
exact cauchy_with_rate_of_cauchy H
end
theorem converges_seq_of_cauchy {X : } (H : cauchy X) : converges_seq X :=
obtain l Nb (conv : converges_to_with_rate (r_seq_of X) l Nb),
from converges_to_with_rate_of_cauchy H,
exists.intro l
(real.approaches_at_infty_intro
take ε : ,
suppose ε > 0,
obtain (k' : ) (Hn : 1 / succ k' < ε), from archimedean_small `ε > 0`,
let k : + := tag (succ k') !succ_pos,
N : + := Nb k in
have Hk : real.of_rat k⁻¹ < ε,
by rewrite [↑pnat.inv, of_rat_divide]; exact Hn,
exists.intro (elt_of N)
(take n : ,
assume Hn : n ≥ elt_of N,
let n' : + := tag n (nat.lt_of_lt_of_le (has_property N) Hn) in
have abs (X n - l) ≤ real.of_rat k⁻¹, by apply conv k n' Hn,
show abs (X n - l) < ε, from lt_of_le_of_lt this Hk))
end analysis
definition complete_metric_space_real [trans_instance] :
complete_metric_space :=
⦃complete_metric_space, metric_space_real,
complete := @analysis.converges_seq_of_cauchy
/- the real numbers can be viewed as a banach space -/
definition real_vector_space_real : real_vector_space :=
⦃ real_vector_space, real.discrete_linear_ordered_field,
smul := mul,
smul_left_distrib := left_distrib,
smul_right_distrib := right_distrib,
mul_smul := mul.assoc,
one_smul := one_mul
definition banach_space_real [trans_instance] : banach_space :=
⦃ banach_space, real_vector_space_real,
norm := abs,
norm_zero := abs_zero,
eq_zero_of_norm_eq_zero := λ a H, eq_zero_of_abs_eq_zero H,
norm_triangle := abs_add_le_abs_add_abs,
norm_smul := abs_mul,
complete := λ X H, analysis.complete H
namespace real
open topology set
open normed_vector_space
section
variable {f : }
theorem continuous_dest (H : continuous f) :
∀ x : , ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ δ : , δ > 0 ∧ ∀ x' : ,
abs (x' - x) < δ → abs (f x' - f x) < ε :=
normed_vector_space.continuous_dest H
theorem continuous_intro
(H : ∀ x : , ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ δ : , δ > 0 ∧ ∀ x' : ,
abs (x' - x) < δ → abs (f x' - f x) < ε) :
continuous f :=
normed_vector_space.continuous_intro H
theorem continuous_at_dest {x : } (H : continuous_at f x) :
∀ ε : , ε > 0 → (∃ δ : , δ > 0 ∧ ∀ x' : , abs (x' - x) < δ → abs (f x' - f x) < ε) :=
normed_vector_space.continuous_at_dest H
theorem continuous_at_intro {x : }
(H : ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ δ : , δ > 0 ∧ ∀ x' : ,
abs (x' - x) < δ → abs (f x' - f x) < ε) :
continuous_at f x :=
normed_vector_space.continuous_at_intro H
theorem continuous_at_within_intro {x : } {s : set }
(H : ∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, x' ∈ s → abs (x' - x) < δ → abs ((f x') - (f x)) < ε) :
continuous_at_on f x s :=
normed_vector_space.continuous_at_within_intro H
theorem continuous_at_on_dest {x : } {s : set } (Hfx : continuous_at_on f x s) :
∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, x' ∈ s → abs (x' - x) < δ → abs ((f x') - (f x)) < ε :=
normed_vector_space.continuous_at_on_dest Hfx
theorem continuous_on_intro {s : set }
(H : ∀ x ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, x' ∈ s → abs (x' - x) < δ → abs ((f x') - (f x)) < ε) :
continuous_on f s :=
normed_vector_space.continuous_on_intro H
theorem continuous_on_dest {s : set } (H : continuous_on f s) {x : } (Hxs : x ∈ s) :
∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, x' ∈ s → abs (x' - x) < δ → abs ((f x') - (f x)) < ε :=
normed_vector_space.continuous_on_dest H Hxs
end
section approaches
open set.filter set topology
variables {X : Type} {F : filter X} {f : X → } {y : }
proposition approaches_intro (H : ∀ ε, ε > 0 → eventually (λ x, abs ((f x) - y) < ε) F) :
(f ⟶ y) F :=
normed_vector_space.approaches_intro H
proposition approaches_dest (H : (f ⟶ y) F) {ε : } (εpos : ε > 0) :
eventually (λ x, abs ((f x) - y) < ε) F :=
normed_vector_space.approaches_dest H εpos
variables (F f y)
proposition approaches_iff : ((f ⟶ y) F) ↔ (∀ ε, ε > 0 → eventually (λ x, abs ((f x) - y) < ε) F) :=
iff.intro approaches_dest approaches_intro
end approaches
proposition approaches_at_infty_intro {f : } {y : }
(H : ∀ ε, ε > 0 → ∃ N, ∀ n, n ≥ N → abs ((f n) - y) < ε) :
f ⟶ y [at ∞] :=
normed_vector_space.approaches_at_infty_intro H
proposition approaches_at_infty_dest {f : } {y : }
(H : f ⟶ y [at ∞]) ⦃ε : ℝ⦄ (εpos : ε > 0) :
∃ N, ∀ ⦃n⦄, n ≥ N → abs ((f n) - y) < ε :=
normed_vector_space.approaches_at_infty_dest H εpos
proposition approaches_at_infty_iff (f : ) (y : ) :
f ⟶ y [at ∞] ↔ (∀ ε, ε > 0 → ∃ N, ∀ ⦃n⦄, n ≥ N → abs ((f n) - y) < ε) :=
iff.intro approaches_at_infty_dest approaches_at_infty_intro
section
variable {f : }
proposition approaches_at_dest {y x : }
(H : f ⟶ y [at x]) ⦃ε : ℝ⦄ (εpos : ε > 0) :
∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, abs (x' - x) < δ → x' ≠ x → abs ((f x') - y) < ε :=
metric_space.approaches_at_dest H εpos
proposition approaches_at_intro {y x : }
(H : ∀ ε, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, abs (x' - x) < δ → x' ≠ x → abs ((f x') - y) < ε) :
f ⟶ y [at x] :=
metric_space.approaches_at_intro H
proposition approaches_at_iff (y x : ) : f ⟶ y [at x] ↔
(∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, abs (x' - x) < δ → x' ≠ x → abs ((f x') - y) < ε) :=
iff.intro approaches_at_dest approaches_at_intro
end
end real
/- limits under pointwise operations -/
section limit_operations
open set
variable {A : Type}
variables {X Y : A → }
variables {x y : }
variable {F : filter A}
proposition mul_left_approaches (c : ) (HX : (X ⟶ x) F) :
((λ n, c * X n) ⟶ c * x) F :=
smul_approaches HX c
proposition mul_right_approaches (c : ) (HX : (X ⟶ x) F) :
((λ n, X n * c) ⟶ x * c) F :=
have (λ n, X n * c) = (λ n, c * X n), from funext (λ n, !mul.comm),
by rewrite [this, mul.comm]; apply mul_left_approaches _ HX
theorem approaches_squeeze (HX : (X ⟶ x) F) (HY : (Y ⟶ x) F)
{Z : A → } (HZX : filter.eventually (λ n, X n ≤ Z n) F) (HZY : filter.eventually (λ n, Z n ≤ Y n) F) :
(Z ⟶ x) F :=
begin
apply real.approaches_intro,
intro ε Hε,
apply filter.eventually_mp,
rotate 1,
apply filter.eventually_and,
apply real.approaches_dest HX Hε,
apply real.approaches_dest HY Hε,
apply filter.eventually_mono,
apply filter.eventually_and HZX HZY,
intros x' Hlo Hdst,
change abs (Z x' - x) < ε,
cases em (x ≤ Z x') with HxleZ HxnleZ, -- annoying linear arith
{have Y x' - x = (Z x' - x) + (Y x' - Z x'), by rewrite -sub_eq_sub_add_sub,
have H : abs (Y x' - x) < ε, from and.right Hdst,
rewrite this at H,
have H'' : Y x' - Z x' ≥ 0, from sub_nonneg_of_le (and.right Hlo),
have H' : Z x' - x ≥ 0, from sub_nonneg_of_le HxleZ,
krewrite [abs_of_nonneg H', abs_of_nonneg (add_nonneg H' H'') at H],
apply lt_of_add_lt_of_nonneg_left H H''},
{have X x' - x = (Z x' - x) + (X x' - Z x'), by rewrite -sub_eq_sub_add_sub,
have H : abs (X x' - x) < ε, from and.left Hdst,
rewrite this at H,
have H' : x - Z x' > 0, from sub_pos_of_lt (lt_of_not_ge HxnleZ),
have H'2 : Z x' - x < 0,
by rewrite [-neg_neg (Z x' - x)]; apply neg_neg_of_pos; rewrite [neg_sub]; apply H',
have H'' : X x' - Z x' ≤ 0, from sub_nonpos_of_le (and.left Hlo),
krewrite [abs_of_neg H'2, abs_of_neg (add_neg_of_neg_of_nonpos H'2 H'') at H, neg_add at H],
apply lt_of_add_lt_of_nonneg_left H,
apply neg_nonneg_of_nonpos H''}
end
proposition approaches_of_abs_sub_approaches {F} (Habs : ((λ n, abs (X n - x)) ⟶ 0) F) :
(X ⟶ x) F :=
begin
apply real.approaches_intro,
intro ε Hε,
apply set.filter.eventually_mono,
apply real.approaches_dest Habs Hε,
intro n Hn,
have Hn' : abs (abs (X n - x) - 0) < ε, from Hn,
rewrite [sub_zero at Hn', abs_abs at Hn'],
exact Hn'
end
proposition abs_sub_approaches_of_approaches {F} (HX : (X ⟶ x) F) :
((λ n, abs (X n - x)) ⟶ 0) F :=
begin
apply real.approaches_intro,
intros ε Hε,
apply set.filter.eventually_mono,
apply real.approaches_dest HX Hε,
intro n Hn,
have Hn' : abs (abs (X n - x) - 0) < ε, by rewrite [sub_zero, abs_abs]; apply Hn,
exact Hn'
end
proposition bounded_of_approaches_real {F} (HX : (X ⟶ x) F) :
∃ K : , filter.eventually (λ n, abs (X n) ≤ K) F :=
begin
cases bounded_of_converges HX with K HK,
existsi K + abs x,
apply filter.eventually_mono HK,
intro x' Hx',
note Hle := abs_sub_abs_le_abs_sub (X x') x,
apply le.trans,
apply le_add_of_sub_right_le,
apply Hle,
apply add_le_add_right,
apply Hx'
end
proposition mul_approaches {F} (HX : (X ⟶ x) F) (HY : (Y ⟶ y) F) :
((λ n, X n * Y n) ⟶ x * y) F :=
obtain K HK, from bounded_of_approaches_real HX,
have Habsle : filter.eventually
(λ n, abs (X n * Y n - x * y) ≤ K * abs (Y n - y) + abs y * abs (X n - x)) F, begin
have Heq : ∀ n, X n * Y n - x * y = (X n * Y n - X n * y) + (X n * y - x * y),
by intro n; rewrite [-sub_add_cancel (X n * Y n) (X n * y) at {1}, sub_eq_add_neg, *add.assoc],
apply filter.eventually_mono HK,
intro x' Hx',
apply le.trans,
rewrite Heq,
apply abs_add_le_abs_add_abs,
apply add_le_add,
rewrite [-mul_sub_left_distrib, abs_mul],
apply mul_le_mul_of_nonneg_right,
apply Hx',
apply abs_nonneg,
rewrite [-mul_sub_right_distrib, abs_mul, mul.comm],
apply le.refl
end,
have Hdifflim : ((λ n, abs (X n * Y n - x * y)) ⟶ 0) F, begin
apply approaches_squeeze,
rotate 2,
intro,
apply filter.eventually_mono HK,
intro x' Hx',
apply abs_nonneg,
apply Habsle,
apply approaches_constant,
rewrite -{0}zero_add,
apply add_approaches,
krewrite -(mul_zero K),
apply mul_left_approaches,
apply abs_sub_approaches_of_approaches,
exact HY,
krewrite -(mul_zero (abs y)),
apply mul_left_approaches,
apply abs_sub_approaches_of_approaches,
exact HX
end,
approaches_of_abs_sub_approaches Hdifflim
proposition mul_approaches_zero_of_approaches_zero_of_approaches (HX : (X ⟶ 0) F) (HY : (Y ⟶ y) F) :
((λ z, X z * Y z) ⟶ 0) F :=
begin
krewrite [-zero_mul y],
apply mul_approaches,
exact HX, exact HY
end
proposition mul_approaches_zero_of_approaches_of_approaches_zero (HX : (X ⟶ y) F) (HY : (Y ⟶ 0) F) :
((λ z, X z * Y z) ⟶ 0) F :=
begin
have H : (λ z, X z * Y z) = (λ z, Y z * X z), from funext (λ a, !mul.comm),
rewrite H,
exact mul_approaches_zero_of_approaches_zero_of_approaches HY HX
end
proposition abs_approaches_zero_of_approaches_zero (HX : (X ⟶ 0) F) : ((λ n, abs (X n)) ⟶ 0) F :=
norm_approaches_zero_of_approaches_zero HX
proposition approaches_zero_of_abs_approaches_zero (HX : ((λ n, abs (X n)) ⟶ 0) F) :
(X ⟶ 0) F :=
approaches_zero_of_norm_approaches_zero HX
proposition abs_approaches_zero_iff :
((λ n, abs (X n)) ⟶ 0) F ↔ (X ⟶ 0) F :=
iff.intro approaches_zero_of_abs_approaches_zero abs_approaches_zero_of_approaches_zero
end limit_operations
/- monotone sequences -/
section monotone_sequences
open real set
variable {X : }
proposition converges_to_seq_sup_of_nondecreasing (nondecX : nondecreasing X) {b : }
(Hb : ∀ i, X i ≤ b) : X ⟶ sup (X ' univ) [at ∞] :=
real.approaches_at_infty_intro
(let sX := sup (X ' univ) in
have Xle : ∀ i, X i ≤ sX, from
take i,
have ∀ x, x ∈ X ' univ → x ≤ b, from
(take x, assume H,
obtain i [H' (Hi : X i = x)], from H,
by rewrite -Hi; exact Hb i),
show X i ≤ sX, from le_sup (mem_image_of_mem X !mem_univ) this,
have exX : ∃ x, x ∈ X ' univ,
from exists.intro (X 0) (mem_image_of_mem X !mem_univ),
take ε, assume epos : ε > 0,
have sX - ε < sX, from !sub_lt_of_pos epos,
obtain x' [(H₁x' : x' ∈ X ' univ) (H₂x' : sX - ε < x')],
from exists_mem_and_lt_of_lt_sup exX this,
obtain i [H' (Hi : X i = x')], from H₁x',
have Hi' : ∀ j, j ≥ i → sX - ε < X j, from
take j, assume Hj, lt_of_lt_of_le (by rewrite Hi; apply H₂x') (nondecX Hj),
exists.intro i
(take j, assume Hj : j ≥ i,
have X j - sX ≤ 0, from sub_nonpos_of_le (Xle j),
have eq₁ : abs (X j - sX) = sX - X j, by rewrite [abs_of_nonpos this, neg_sub],
have sX - ε < X j, from lt_of_lt_of_le (by rewrite Hi; apply H₂x') (nondecX Hj),
have sX < X j + ε, from lt_add_of_sub_lt_right this,
have sX - X j < ε, from sub_lt_left_of_lt_add this,
show (abs (X j - sX)) < ε, by rewrite eq₁; exact this))
proposition converges_to_seq_inf_of_nonincreasing (nonincX : nonincreasing X) {b : }
(Hb : ∀ i, b ≤ X i) : X ⟶ inf (X ' univ) [at ∞] :=
have H₁ : ∃ x, x ∈ X ' univ, from exists.intro (X 0) (mem_image_of_mem X !mem_univ),
have H₂ : ∀ x, x ∈ X ' univ → b ≤ x, from
(take x, assume H,
obtain i [Hi₁ (Hi₂ : X i = x)], from H,
show b ≤ x, by rewrite -Hi₂; apply Hb i),
have H₃ : {x : | -x ∈ X ' univ} = {x : | x ∈ (λ n, -X n) ' univ}, from calc
{x : | -x ∈ X ' univ} = (λ y, -y) ' (X ' univ) : by rewrite image_neg_eq
... = {x : | x ∈ (λ n, -X n) ' univ} : image_comp,
have H₄ : ∀ i, - X i ≤ - b, from take i, neg_le_neg (Hb i),
begin
apply approaches_neg,
-- need krewrite here
krewrite [-sup_neg H₁ H₂, H₃, -nondecreasing_neg_iff at nonincX],
apply converges_to_seq_sup_of_nondecreasing nonincX H₄
end
end monotone_sequences
/- x^n converges to 0 if abs x < 1 -/
section xn
open nat set
theorem pow_approaches_zero_at_infty {x : } (H : abs x < 1) :
(λ n, x^n) ⟶ 0 [at ∞] :=
suffices H' : (λ n, (abs x)^n) ⟶ 0 [at ∞], from
have (λ n, (abs x)^n) = (λ n, abs (x^n)), from funext (take n, eq.symm !abs_pow),
by rewrite this at H'; exact approaches_zero_of_abs_approaches_zero H',
let aX := (λ n, (abs x)^n),
iaX := real.inf (aX ' univ),
asX := (λ n, (abs x)^(succ n)) in
have noninc_aX : nonincreasing aX, from
nonincreasing_of_forall_ge_succ
(take i,
have (abs x) * (abs x)^i ≤ 1 * (abs x)^i,
from mul_le_mul_of_nonneg_right (le_of_lt H) (!pow_nonneg_of_nonneg !abs_nonneg),
have (abs x) * (abs x)^i ≤ (abs x)^i, by krewrite one_mul at this; exact this,
show (abs x) ^ (succ i) ≤ (abs x)^i, by rewrite pow_succ; apply this),
have bdd_aX : ∀ i, 0 ≤ aX i, from take i, !pow_nonneg_of_nonneg !abs_nonneg,
have aXconv : aX ⟶ iaX [at ∞], proof converges_to_seq_inf_of_nonincreasing noninc_aX bdd_aX qed,
have asXconv : asX ⟶ iaX [at ∞], from tendsto_succ_at_infty aXconv,
have asXconv' : asX ⟶ (abs x) * iaX [at ∞], from mul_left_approaches (abs x) aXconv,
have iaX = (abs x) * iaX, from sorry, -- converges_to_seq_unique asXconv asXconv',
have iaX = 0, from eq_zero_of_mul_eq_self_left (ne_of_lt H) (eq.symm this),
show aX ⟶ 0 [at ∞], begin rewrite -this, exact aXconv end --from this ▸ aXconv
end xn
/- continuity on the reals -/
/-namespace real
open topology set
open normed_vector_space
section
variable {f : }
theorem continuous_dest (H : continuous f) :
∀ x : , ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ δ : , δ > 0 ∧ ∀ x' : ,
abs (x' - x) < δ → abs (f x' - f x) < ε :=
normed_vector_space.continuous_dest H
theorem continuous_intro
(H : ∀ x : , ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ δ : , δ > 0 ∧ ∀ x' : ,
abs (x' - x) < δ → abs (f x' - f x) < ε) :
continuous f :=
normed_vector_space.continuous_intro H
theorem continuous_at_dest {x : } (H : continuous_at f x) :
∀ ε : , ε > 0 → (∃ δ : , δ > 0 ∧ ∀ x' : , abs (x' - x) < δ → abs (f x' - f x) < ε) :=
normed_vector_space.continuous_at_dest H
theorem continuous_at_intro {x : }
(H : ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ δ : , δ > 0 ∧ ∀ x' : ,
abs (x' - x) < δ → abs (f x' - f x) < ε) :
continuous_at f x :=
normed_vector_space.continuous_at_intro H
theorem continuous_at_within_intro {x : } {s : set }
(H : ∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, x' ∈ s → abs (x' - x) < δ → abs ((f x') - (f x)) < ε) :
continuous_at_on f x s :=
normed_vector_space.continuous_at_within_intro H
theorem continuous_at_on_dest {x : } {s : set } (Hfx : continuous_at_on f x s) :
∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, x' ∈ s → abs (x' - x) < δ → abs ((f x') - (f x)) < ε :=
normed_vector_space.continuous_at_on_dest Hfx
theorem continuous_on_intro {s : set }
(H : ∀ x ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, x' ∈ s → abs (x' - x) < δ → abs ((f x') - (f x)) < ε) :
continuous_on f s :=
normed_vector_space.continuous_on_intro H
theorem continuous_on_dest {s : set } (H : continuous_on f s) {x : } (Hxs : x ∈ s) :
∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, x' ∈ s → abs (x' - x) < δ → abs ((f x') - (f x)) < ε :=
normed_vector_space.continuous_on_dest H Hxs
end
section
variable {f : }
proposition approaches_at_infty_intro {y : }
(H : ∀ ε, ε > 0 → ∃ N, ∀ n, n ≥ N → abs ((f n) - y) < ε) :
f ⟶ y [at ∞] :=
normed_vector_space.approaches_at_infty_intro H
proposition approaches_at_infty_dest {y : }
(H : f ⟶ y [at ∞]) ⦃ε : ℝ⦄ (εpos : ε > 0) :
∃ N, ∀ ⦃n⦄, n ≥ N → abs ((f n) - y) < ε :=
approaches_at_infty_dest H εpos
proposition approaches_at_infty_iff (y : ) :
f ⟶ y [at ∞] ↔ (∀ ε, ε > 0 → ∃ N, ∀ ⦃n⦄, n ≥ N → abs((f n) - y) < ε) :=
iff.intro approaches_at_infty_dest approaches_at_infty_intro
end
section
variable {f : }
proposition approaches_at_dest {y x : }
(H : f ⟶ y [at x]) ⦃ε : ℝ⦄ (εpos : ε > 0) :
∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, abs (x' - x) < δ → x' ≠ x → abs ((f x') - y) < ε :=
approaches_at_dest H εpos
proposition approaches_at_intro {y x : }
(H : ∀ ε, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, abs (x' - x) < δ → x' ≠ x → abs ((f x') - y) < ε) :
f ⟶ y [at x] :=
approaches_at_intro H
proposition approaches_at_iff (y x : ) : f ⟶ y [at x] ↔
(∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, abs (x' - x) < δ → x' ≠ x → abs ((f x') - y) < ε) :=
iff.intro approaches_at_dest approaches_at_intro
/-proposition approaches_seq_real_intro {X : } {y : }
(H : ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : , ∀ {n}, n ≥ N → abs (X n - y) < ε) :
(X ⟶ y [at ∞]) := metric_space.approaches_at_infty_intro H
proposition approaches_seq_real_elim {X : } {y : } (H : X ⟶ y [at ∞]) :
∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : , ∀ {n}, n ≥ N → abs (X n - y) < ε := metric_space.approaches_at_infty_dest H
proposition approaches_seq_real_intro' {X : } {y : }
(H : ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : , ∀ {n}, n ≥ N → abs (X n - y) ≤ ε) :
(X ⟶ y [at ∞]) :=
approaches_at_infty_intro' H-/
end
end real-/
section continuous
open topology
variable {f : }
variable (Hf : continuous f)
include Hf
theorem pos_on_nbhd_of_cts_of_pos {b : } (Hb : f b > 0) :
∃ δ : , δ > 0 ∧ ∀ y, abs (y - b) < δ → f y > 0 :=
begin
let Hcont := real.continuous_dest Hf b Hb,
cases Hcont with δ Hδ,
existsi δ,
split,
exact and.left Hδ,
intro y Hy,
let Hy' := and.right Hδ y Hy,
note Hlt := sub_lt_of_abs_sub_lt_left Hy',
rewrite sub_self at Hlt,
assumption
end
theorem neg_on_nbhd_of_cts_of_neg {b : } (Hb : f b < 0) :
∃ δ : , δ > 0 ∧ ∀ y, abs (y - b) < δ → f y < 0 :=
begin
let Hcont := real.continuous_dest Hf b (neg_pos_of_neg Hb),
cases Hcont with δ Hδ,
existsi δ,
split,
exact and.left Hδ,
intro y Hy,
let Hy' := and.right Hδ y Hy,
let Hlt := sub_lt_of_abs_sub_lt_right Hy',
note Hlt' := lt_add_of_sub_lt_left Hlt,
rewrite [add.comm at Hlt', -sub_eq_add_neg at Hlt', sub_self at Hlt'],
assumption
end
theorem continuous_mul_of_continuous {g : } (Hcong : continuous g) :
continuous (λ x, f x * g x) :=
begin
apply continuous_of_forall_continuous_at,
intro x,
apply continuous_at_of_tendsto_at,
apply mul_approaches,
all_goals apply tendsto_at_of_continuous_at,
all_goals apply forall_continuous_at_of_continuous,
apply Hf,
apply Hcong
end
end continuous