lean2/library/algebra/ring_power.lean
2016-02-25 12:26:20 -08:00

200 lines
6.1 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
Properties of the power operation in various structures, including ordered rings and fields.
-/
import .group_power .ordered_field
open nat
variable {A : Type}
section semiring
variable [s : semiring A]
include s
definition semiring_has_pow_nat [instance] : has_pow_nat A :=
monoid_has_pow_nat
theorem zero_pow {m : } (mpos : m > 0) : 0^m = (0 : A) :=
have h₁ : ∀ m : nat, (0 : A)^(succ m) = (0 : A),
begin
intro m, induction m,
krewrite pow_one,
apply zero_mul
end,
obtain m' (h₂ : m = succ m'), from exists_eq_succ_of_pos mpos,
show 0^m = 0, by rewrite h₂; apply h₁
end semiring
section integral_domain
variable [s : integral_domain A]
include s
definition integral_domain_has_pow_nat [instance] : has_pow_nat A :=
monoid_has_pow_nat
theorem eq_zero_of_pow_eq_zero {a : A} {m : } (H : a^m = 0) : a = 0 :=
or.elim (eq_zero_or_pos m)
(suppose m = 0,
by rewrite [`m = 0` at H, pow_zero at H]; apply absurd H (ne.symm zero_ne_one))
(suppose m > 0,
have h₁ : ∀ m, a^succ m = 0 → a = 0,
begin
intro m,
induction m with m ih,
{krewrite pow_one; intros; assumption},
rewrite pow_succ,
intro H,
cases eq_zero_or_eq_zero_of_mul_eq_zero H with h₃ h₄,
assumption,
exact ih h₄
end,
obtain m' (h₂ : m = succ m'), from exists_eq_succ_of_pos `m > 0`,
show a = 0, by rewrite h₂ at H; apply h₁ m' H)
theorem pow_ne_zero_of_ne_zero {a : A} {m : } (H : a ≠ 0) : a^m ≠ 0 :=
assume H', H (eq_zero_of_pow_eq_zero H')
end integral_domain
section division_ring
variable [s : division_ring A]
include s
theorem division_ring.pow_ne_zero_of_ne_zero {a : A} {m : } (H : a ≠ 0) : a^m ≠ 0 :=
or.elim (eq_zero_or_pos m)
(suppose m = 0,
by rewrite [`m = 0`, pow_zero]; exact (ne.symm zero_ne_one))
(suppose m > 0,
have h₁ : ∀ m, a^succ m ≠ 0,
begin
intro m,
induction m with m ih,
{ krewrite pow_one; assumption },
rewrite pow_succ,
apply division_ring.mul_ne_zero H ih
end,
obtain m' (h₂ : m = succ m'), from exists_eq_succ_of_pos `m > 0`,
show a^m ≠ 0, by rewrite h₂; apply h₁ m')
end division_ring
section linear_ordered_semiring
variable [s : linear_ordered_semiring A]
include s
theorem pow_pos_of_pos {x : A} (i : ) (H : x > 0) : x^i > 0 :=
begin
induction i with [j, ih],
{show (1 : A) > 0, from zero_lt_one},
{show x^(succ j) > 0, from mul_pos H ih}
end
theorem pow_nonneg_of_nonneg {x : A} (i : ) (H : x ≥ 0) : x^i ≥ 0 :=
begin
induction i with j ih,
{show (1 : A) ≥ 0, from le_of_lt zero_lt_one},
{show x^(succ j) ≥ 0, from mul_nonneg H ih}
end
theorem pow_le_pow_of_le {x y : A} (i : ) (H₁ : 0 ≤ x) (H₂ : x ≤ y) : x^i ≤ y^i :=
begin
induction i with i ih,
{rewrite *pow_zero, apply le.refl},
rewrite *pow_succ,
have H : 0 ≤ x^i, from pow_nonneg_of_nonneg i H₁,
apply mul_le_mul H₂ ih H (le.trans H₁ H₂)
end
theorem pow_ge_one {x : A} (i : ) (xge1 : x ≥ 1) : x^i ≥ 1 :=
assert H : x^i ≥ 1^i, from pow_le_pow_of_le i (le_of_lt zero_lt_one) xge1,
by rewrite one_pow at H; exact H
theorem pow_gt_one {x : A} {i : } (xgt1 : x > 1) (ipos : i > 0) : x^i > 1 :=
assert xpos : x > 0, from lt.trans zero_lt_one xgt1,
begin
induction i with [i, ih],
{exfalso, exact !lt.irrefl ipos},
have xige1 : x^i ≥ 1, from pow_ge_one _ (le_of_lt xgt1),
rewrite [pow_succ, -mul_one 1],
apply mul_lt_mul xgt1 xige1 zero_lt_one,
apply le_of_lt xpos
end
theorem squared_lt_squared {x y : A} (H1 : 0 ≤ x) (H2 : x < y) : x^2 < y^2 :=
by rewrite [*pow_two]; apply mul_self_lt_mul_self H1 H2
theorem squared_le_squared {x y : A} (H1 : 0 ≤ x) (H2 : x ≤ y) : x^2 ≤ y^2 :=
or.elim (lt_or_eq_of_le H2)
(assume xlty, le_of_lt (squared_lt_squared H1 xlty))
(assume xeqy, by rewrite xeqy; apply le.refl)
theorem lt_of_squared_lt_squared {x y : A} (H1 : y ≥ 0) (H2 : x^2 < y^2) : x < y :=
lt_of_not_ge (assume H : x ≥ y, not_le_of_gt H2 (squared_le_squared H1 H))
theorem le_of_squared_le_squared {x y : A} (H1 : y ≥ 0) (H2 : x^2 ≤ y^2) : x ≤ y :=
le_of_not_gt (assume H : x > y, not_lt_of_ge H2 (squared_lt_squared H1 H))
theorem eq_of_squared_eq_squared_of_nonneg {x y : A} (H1 : x ≥ 0) (H2 : y ≥ 0) (H3 : x^2 = y^2) :
x = y :=
lt.by_cases
(suppose x < y, absurd (eq.subst H3 (squared_lt_squared H1 this)) !lt.irrefl)
(suppose x = y, this)
(suppose x > y, absurd (eq.subst H3 (squared_lt_squared H2 this)) !lt.irrefl)
end linear_ordered_semiring
section decidable_linear_ordered_comm_ring
variable [s : decidable_linear_ordered_comm_ring A]
include s
definition decidable_linear_ordered_comm_ring_has_pow_nat [instance] : has_pow_nat A :=
monoid_has_pow_nat
theorem abs_pow (a : A) (n : ) : abs (a^n) = abs a^n :=
begin
induction n with n ih,
krewrite [*pow_zero, (abs_of_nonneg zero_le_one : abs (1 : A) = 1)],
rewrite [*pow_succ, abs_mul, ih]
end
theorem squared_nonneg (x : A) : x^2 ≥ 0 := by rewrite [pow_two]; apply mul_self_nonneg
theorem eq_zero_of_squared_eq_zero {x : A} (H : x^2 = 0) : x = 0 :=
by rewrite [pow_two at H]; exact eq_zero_of_mul_self_eq_zero H
theorem abs_eq_abs_of_squared_eq_squared {x y : A} (H : x^2 = y^2) : abs x = abs y :=
have (abs x)^2 = (abs y)^2, by rewrite [-+abs_pow, H],
eq_of_squared_eq_squared_of_nonneg (abs_nonneg x) (abs_nonneg y) this
end decidable_linear_ordered_comm_ring
section field
variable [s : field A]
include s
theorem field.div_pow (a : A) {b : A} {n : } (bnz : b ≠ 0) : (a / b)^n = a^n / b^n :=
begin
induction n with n ih,
krewrite [*pow_zero, div_one],
have bnnz : b^n ≠ 0, from division_ring.pow_ne_zero_of_ne_zero bnz,
rewrite [*pow_succ, ih, !field.div_mul_div bnz bnnz]
end
end field
section discrete_field
variable [s : discrete_field A]
include s
theorem div_pow (a : A) {b : A} {n : } : (a / b)^n = a^n / b^n :=
begin
induction n with n ih,
krewrite [*pow_zero, div_one],
rewrite [*pow_succ, ih, div_mul_div]
end
end discrete_field