lean2/library/data/nat/bigops.lean
Leonardo de Moura 146edde5b3 feat(library/class): mark instances as quasireducible by default
quasireducible are also known as lazyreducible.

There is a lot of work to be done.
We still need to revise blast, and add a normalizer for type class
instances. This commit worksaround that by eagerly unfolding
quasireducible.
2016-02-25 12:11:29 -08:00

195 lines
7.2 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
Finite sums and products over intervals of natural numbers.
-/
import data.nat.order algebra.group_bigops algebra.interval
namespace nat
/- sums -/
section add_monoid
variables {A : Type} [add_monoid A]
definition sum_up_to (n : ) (f : → A) : A :=
nat.rec_on n 0 (λ n a, a + f n)
notation `∑` binders ` < ` n `, ` r:(scoped f, sum_up_to n f) := r
proposition sum_up_to_zero (f : → A) : (∑ i < 0, f i) = 0 := rfl
proposition sum_up_to_succ (n : ) (f : → A) : (∑ i < succ n, f i) = (∑ i < n, f i) + f n := rfl
proposition sum_up_to_one (f : → A) : (∑ i < 1, f i) = f 0 := zero_add (f 0)
definition sum_range (m n : ) (f : → A) : A := sum_up_to (succ n - m) (λ i, f (i + m))
notation `∑` binders `=` m `...` n `, ` r:(scoped f, sum_range m n f) := r
proposition sum_range_def (m n : ) (f : → A) :
(∑ i = m...n, f i) = (∑ i < (succ n - m), f (i + m)) := rfl
proposition sum_range_self (m : ) (f : → A) :
(∑ i = m...m, f i) = f m :=
by krewrite [↑sum_range, succ_sub !le.refl, nat.sub_self, sum_up_to_one, zero_add]
proposition sum_range_succ {m n : } (f : → A) (H : m ≤ succ n) :
(∑ i = m...succ n, f i) = (∑ i = m...n, f i) + f (succ n) :=
by rewrite [↑sum_range, succ_sub H, sum_up_to_succ, nat.sub_add_cancel H]
proposition sum_up_to_succ_eq_sum_range_zero (n : ) (f : → A) :
(∑ i < succ n, f i) = (∑ i = 0...n, f i) := rfl
end add_monoid
section finset
variables {A : Type} [add_comm_monoid A]
open finset
proposition sum_up_to_eq_Sum_upto (n : ) (f : → A) :
(∑ i < n, f i) = (∑ i ∈ upto n, f i) :=
begin
induction n with n ih,
{exact rfl},
have H : upto n ∩ '{n} = ∅, from
inter_eq_empty
(take x,
suppose x ∈ upto n,
have x < n, from lt_of_mem_upto this,
suppose x ∈ '{n},
have x = n, using this, by rewrite -mem_singleton_iff; apply this,
have n < n, from eq.subst this `x < n`,
show false, from !lt.irrefl this),
rewrite [sum_up_to_succ, ih, upto_succ, Sum_union _ H, Sum_singleton]
end
end finset
section set
variables {A : Type} [add_comm_monoid A]
open set interval
proposition sum_range_eq_sum_interval_aux (m n : ) (f : → A) :
(∑ i = m...m+n, f i) = (∑ i ∈ '[m, m + n], f i) :=
begin
induction n with n ih,
{krewrite [nat.add_zero, sum_range_self, Icc_self, Sum_singleton]},
have H : m ≤ succ (m + n), from le_of_lt (lt_of_le_of_lt !le_add_right !lt_succ_self),
have H' : '[m, m + n] ∩ '{succ (m + n)} = ∅, from
eq_empty_of_forall_not_mem (take x, assume H1,
have x = succ (m + n), from eq_of_mem_singleton (and.right H1),
have succ (m + n) ≤ m + n, from eq.subst this (and.right (and.left H1)),
show false, from not_lt_of_ge this !lt_succ_self),
rewrite [add_succ, sum_range_succ f H, Icc_eq_Icc_union_Ioc !le_add_right !le_succ,
nat.Ioc_eq_Icc_succ, Icc_self, Sum_union f H', Sum_singleton, ih]
end
proposition sum_range_eq_sum_interval {m n : } (f : → A) (H : m ≤ n) :
(∑ i = m...n, f i) = (∑ i ∈ '[m, n], f i) :=
have n = m + (n - m), by rewrite [add.comm, nat.sub_add_cancel H],
using this, by rewrite this; apply sum_range_eq_sum_interval_aux
proposition sum_range_offset (m n : ) (f : → A) :
(∑ i = m...m+n, f i) = (∑ i = 0...n, f (m + i)) :=
have bij_on (add m) ('[0, n]) ('[m, m+n]), from !nat.bij_on_add_Icc_zero,
by+ rewrite [-zero_add n at {2}, *sum_range_eq_sum_interval_aux, Sum_eq_of_bij_on f this, zero_add]
end set
/- products -/
section monoid
variables {A : Type} [monoid A]
definition prod_up_to (n : ) (f : → A) : A :=
nat.rec_on n 1 (λ n a, a * f n)
notation `∏` binders ` < ` n `, ` r:(scoped f, prod_up_to n f) := r
proposition prod_up_to_zero (f : → A) : (∏ i < 0, f i) = 1 := rfl
proposition prod_up_to_succ (n : ) (f : → A) : (∏ i < succ n, f i) = (∏ i < n, f i) * f n := rfl
proposition prod_up_to_one (f : → A) : (∏ i < 1, f i) = f 0 := one_mul (f 0)
definition prod_range (m n : ) (f : → A) : A := prod_up_to (succ n - m) (λ i, f (i + m))
notation `∏` binders `=` m `...` n `, ` r:(scoped f, prod_range m n f) := r
proposition prod_range_def (m n : ) (f : → A) :
(∏ i = m...n, f i) = (∏ i < (succ n - m), f (i + m)) := rfl
proposition prod_range_self (m : ) (f : → A) :
(∏ i = m...m, f i) = f m :=
by krewrite [↑prod_range, succ_sub !le.refl, nat.sub_self, prod_up_to_one, zero_add]
proposition prod_range_succ {m n : } (f : → A) (H : m ≤ succ n) :
(∏ i = m...succ n, f i) = (∏ i = m...n, f i) * f (succ n) :=
by rewrite [↑prod_range, succ_sub H, prod_up_to_succ, nat.sub_add_cancel H]
proposition prod_up_to_succ_eq_prod_range_zero (n : ) (f : → A) :
(∏ i < succ n, f i) = (∏ i = 0...n, f i) := rfl
end monoid
section finset
variables {A : Type} [comm_monoid A]
open finset
proposition prod_up_to_eq_Prod_upto (n : ) (f : → A) :
(∏ i < n, f i) = (∏ i ∈ upto n, f i) :=
begin
induction n with n ih,
{exact rfl},
have H : upto n ∩ '{n} = ∅, from
inter_eq_empty
(take x,
suppose x ∈ upto n,
have x < n, from lt_of_mem_upto this,
suppose x ∈ '{n},
have x = n, using this, by rewrite -mem_singleton_iff; apply this,
have n < n, from eq.subst this `x < n`,
show false, from !lt.irrefl this),
rewrite [prod_up_to_succ, ih, upto_succ, Prod_union _ H, Prod_singleton]
end
end finset
section set
variables {A : Type} [comm_monoid A]
open set interval
proposition prod_range_eq_prod_interval_aux (m n : ) (f : → A) :
(∏ i = m...m+n, f i) = (∏ i ∈ '[m, m + n], f i) :=
begin
induction n with n ih,
{krewrite [nat.add_zero, prod_range_self, Icc_self, Prod_singleton]},
have H : m ≤ succ (m + n), from le_of_lt (lt_of_le_of_lt !le_add_right !lt_succ_self),
have H' : '[m, m + n] ∩ '{succ (m + n)} = ∅, from
eq_empty_of_forall_not_mem (take x, assume H1,
have x = succ (m + n), from eq_of_mem_singleton (and.right H1),
have succ (m + n) ≤ m + n, from eq.subst this (and.right (and.left H1)),
show false, from not_lt_of_ge this !lt_succ_self),
rewrite [add_succ, prod_range_succ f H, Icc_eq_Icc_union_Ioc !le_add_right !le_succ,
nat.Ioc_eq_Icc_succ, Icc_self, Prod_union f H', Prod_singleton, ih]
end
proposition prod_range_eq_prod_interval {m n : } (f : → A) (H : m ≤ n) :
(∏ i = m...n, f i) = (∏ i ∈ '[m, n], f i) :=
have n = m + (n - m), by rewrite [add.comm, nat.sub_add_cancel H],
using this, by rewrite this; apply prod_range_eq_prod_interval_aux
proposition prod_range_offset (m n : ) (f : → A) :
(∏ i = m...m+n, f i) = (∏ i = 0...n, f (m + i)) :=
have bij_on (add m) ('[0, n]) ('[m, m+n]), from !nat.bij_on_add_Icc_zero,
by+ rewrite [-zero_add n at {2}, *prod_range_eq_prod_interval_aux, Prod_eq_of_bij_on f this,
zero_add]
end set
end nat