1a67e69678
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
90 lines
No EOL
3.5 KiB
Text
90 lines
No EOL
3.5 KiB
Text
----------------------------------------------------------------------------------------------------
|
||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||
-- Author: Leonardo de Moura
|
||
----------------------------------------------------------------------------------------------------
|
||
|
||
import logic.connectives.basic logic.connectives.eq
|
||
|
||
namespace decidable
|
||
|
||
inductive decidable (p : Prop) : Type :=
|
||
| inl : p → decidable p
|
||
| inr : ¬p → decidable p
|
||
|
||
theorem decidable_true [instance] : decidable true :=
|
||
inl trivial
|
||
|
||
theorem decidable_false [instance] : decidable false :=
|
||
inr not_false_trivial
|
||
|
||
theorem induction_on {p : Prop} {C : Prop} (H : decidable p) (H1 : p → C) (H2 : ¬p → C) : C :=
|
||
decidable_rec H1 H2 H
|
||
|
||
definition rec_on [inline] {p : Prop} {C : Type} (H : decidable p) (H1 : p → C) (H2 : ¬p → C) : C :=
|
||
decidable_rec H1 H2 H
|
||
|
||
theorem irrelevant {p : Prop} (d1 d2 : decidable p) : d1 = d2 :=
|
||
decidable_rec
|
||
(assume Hp1 : p, decidable_rec
|
||
(assume Hp2 : p, congr2 inl (refl Hp1)) -- using proof irrelevance for Prop
|
||
(assume Hnp2 : ¬p, absurd_elim (inl Hp1 = inr Hnp2) Hp1 Hnp2)
|
||
d2)
|
||
(assume Hnp1 : ¬p, decidable_rec
|
||
(assume Hp2 : p, absurd_elim (inr Hnp1 = inl Hp2) Hp2 Hnp1)
|
||
(assume Hnp2 : ¬p, congr2 inr (refl Hnp1)) -- using proof irrelevance for Prop
|
||
d2)
|
||
d1
|
||
|
||
theorem em (p : Prop) {H : decidable p} : p ∨ ¬p :=
|
||
induction_on H (λ Hp, or_inl Hp) (λ Hnp, or_inr Hnp)
|
||
|
||
theorem by_contradiction {p : Prop} {Hp : decidable p} (H : ¬p → false) : p :=
|
||
or_elim (em p)
|
||
(assume H1 : p, H1)
|
||
(assume H1 : ¬p, false_elim p (H H1))
|
||
|
||
theorem decidable_and [instance] {a b : Prop} (Ha : decidable a) (Hb : decidable b) : decidable (a ∧ b) :=
|
||
rec_on Ha
|
||
(assume Ha : a, rec_on Hb
|
||
(assume Hb : b, inl (and_intro Ha Hb))
|
||
(assume Hnb : ¬b, inr (and_not_right a Hnb)))
|
||
(assume Hna : ¬a, inr (and_not_left b Hna))
|
||
|
||
theorem decidable_or [instance] {a b : Prop} (Ha : decidable a) (Hb : decidable b) : decidable (a ∨ b) :=
|
||
rec_on Ha
|
||
(assume Ha : a, inl (or_inl Ha))
|
||
(assume Hna : ¬a, rec_on Hb
|
||
(assume Hb : b, inl (or_inr Hb))
|
||
(assume Hnb : ¬b, inr (or_not_intro Hna Hnb)))
|
||
|
||
theorem decidable_not [instance] {a : Prop} (Ha : decidable a) : decidable (¬a) :=
|
||
rec_on Ha
|
||
(assume Ha, inr (not_not_intro Ha))
|
||
(assume Hna, inl Hna)
|
||
|
||
theorem decidable_iff [instance] {a b : Prop} (Ha : decidable a) (Hb : decidable b) : decidable (a ↔ b) :=
|
||
rec_on Ha
|
||
(assume Ha, rec_on Hb
|
||
(assume Hb : b, inl (iff_intro (assume H, Hb) (assume H, Ha)))
|
||
(assume Hnb : ¬b, inr (assume H : a ↔ b, absurd (iff_elim_left H Ha) Hnb)))
|
||
(assume Hna, rec_on Hb
|
||
(assume Hb : b, inr (assume H : a ↔ b, absurd (iff_elim_right H Hb) Hna))
|
||
(assume Hnb : ¬b, inl (iff_intro (assume Ha, absurd_elim b Ha Hna) (assume Hb, absurd_elim a Hb Hnb))))
|
||
|
||
theorem decidable_implies [instance] {a b : Prop} (Ha : decidable a) (Hb : decidable b) : decidable (a → b) :=
|
||
rec_on Ha
|
||
(assume Ha : a, rec_on Hb
|
||
(assume Hb : b, inl (assume H, Hb))
|
||
(assume Hnb : ¬b, inr (assume H : a → b, absurd (H Ha) Hnb)))
|
||
(assume Hna : ¬a, inl (assume Ha, absurd_elim b Ha Hna))
|
||
|
||
theorem decidable_iff_equiv {a b : Prop} (Ha : decidable a) (H : a ↔ b) : decidable b :=
|
||
rec_on Ha
|
||
(assume Ha : a, inl (iff_elim_left H Ha))
|
||
(assume Hna : ¬a, inr (iff_elim_left (iff_flip_sign H) Hna))
|
||
|
||
theorem decidable_eq_equiv {a b : Prop} (Ha : decidable a) (H : a = b) : decidable b :=
|
||
decidable_iff_equiv Ha (eq_to_iff H)
|
||
|
||
end decidable |