lean2/library/data/list/basic.lean
2014-12-23 21:14:35 -05:00

241 lines
7.6 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Parikshit Khanna. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: data.list.basic
Authors: Parikshit Khanna, Jeremy Avigad, Leonardo de Moura
Basic properties of lists.
-/
import logic tools.helper_tactics data.nat.basic
open eq.ops helper_tactics nat
inductive list (T : Type) : Type :=
nil {} : list T,
cons : T → list T → list T
namespace list
notation h :: t := cons h t
notation `[` l:(foldr `,` (h t, cons h t) nil) `]` := l
variable {T : Type}
/- append -/
definition append (s t : list T) : list T :=
rec t (λx l u, x::u) s
notation l₁ ++ l₂ := append l₁ l₂
theorem append.nil_left (t : list T) : nil ++ t = t
theorem append.cons (x : T) (s t : list T) : x::s ++ t = x::(s ++ t)
theorem append.nil_right (t : list T) : t ++ nil = t :=
induction_on t rfl (λx l H, H ▸ rfl)
theorem append.assoc (s t u : list T) : s ++ t ++ u = s ++ (t ++ u) :=
induction_on s rfl (λx l H, H ▸ rfl)
/- length -/
definition length : list T → nat :=
rec 0 (λx l m, succ m)
theorem length.nil : length (@nil T) = 0
theorem length.cons (x : T) (t : list T) : length (x::t) = succ (length t)
theorem length.append (s t : list T) : length (s ++ t) = length s + length t :=
induction_on s (!add.left_id⁻¹) (λx s H, !add.succ_left⁻¹ ▸ H ▸ rfl)
-- add_rewrite length_nil length_cons
/- concat -/
definition concat (x : T) : list T → list T :=
rec [x] (λy l l', y::l')
theorem concat.nil (x : T) : concat x nil = [x]
theorem concat.cons (x y : T) (l : list T) : concat x (y::l) = y::(concat x l)
theorem concat.eq_append (x : T) (l : list T) : concat x l = l ++ [x]
-- add_rewrite append_nil append_cons
/- reverse -/
definition reverse : list T → list T :=
rec nil (λx l r, r ++ [x])
theorem reverse.nil : reverse (@nil T) = nil
theorem reverse.cons (x : T) (l : list T) : reverse (x::l) = concat x (reverse l)
theorem reverse.singleton (x : T) : reverse [x] = [x]
theorem reverse.append (s t : list T) : reverse (s ++ t) = (reverse t) ++ (reverse s) :=
induction_on s (!append.nil_right⁻¹)
(λx s H, calc
reverse (x::s ++ t) = reverse t ++ reverse s ++ [x] : {H}
... = reverse t ++ (reverse s ++ [x]) : !append.assoc)
theorem reverse.reverse (l : list T) : reverse (reverse l) = l :=
induction_on l rfl (λx l' H, H ▸ !reverse.append)
theorem concat.eq_reverse_cons (x : T) (l : list T) : concat x l = reverse (x :: reverse l) :=
induction_on l rfl
(λy l' H, calc
concat x (y::l') = (y::l') ++ [x] : !concat.eq_append
... = reverse (reverse (y::l')) ++ [x] : {!reverse.reverse⁻¹})
/- head and tail -/
definition head (x : T) : list T → T :=
rec x (λx l h, x)
theorem head.nil (x : T) : head x nil = x
theorem head.cons (x x' : T) (t : list T) : head x' (x::t) = x
theorem head.concat {s : list T} (t : list T) (x : T) : s ≠ nil → (head x (s ++ t) = head x s) :=
cases_on s
(take H : nil ≠ nil, absurd rfl H)
(take x s, take H : x::s ≠ nil,
calc
head x (x::s ++ t) = head x (x::(s ++ t)) : {!append.cons}
... = x : !head.cons
... = head x (x::s) : !head.cons⁻¹)
definition tail : list T → list T :=
rec nil (λx l b, l)
theorem tail.nil : tail (@nil T) = nil
theorem tail.cons (x : T) (l : list T) : tail (x::l) = l
theorem cons_head_tail {l : list T} (x : T) : l ≠ nil → (head x l)::(tail l) = l :=
cases_on l
(assume H : nil ≠ nil, absurd rfl H)
(take x l, assume H : x::l ≠ nil, rfl)
/- list membership -/
definition mem (x : T) : list T → Prop :=
rec false (λy l H, x = y H)
notation e ∈ s := mem e s
theorem mem.nil (x : T) : x ∈ nil ↔ false :=
iff.rfl
theorem mem.cons (x y : T) (l : list T) : x ∈ y::l ↔ (x = y x ∈ l) :=
iff.rfl
theorem mem.concat_imp_or {x : T} {s t : list T} : x ∈ s ++ t → x ∈ s x ∈ t :=
induction_on s or.inr
(take y s,
assume IH : x ∈ s ++ t → x ∈ s x ∈ t,
assume H1 : x ∈ y::s ++ t,
have H2 : x = y x ∈ s ++ t, from H1,
have H3 : x = y x ∈ s x ∈ t, from or_of_or_of_imp_right H2 IH,
iff.elim_right or.assoc H3)
theorem mem.or_imp_concat {x : T} {s t : list T} : x ∈ s x ∈ t → x ∈ s ++ t :=
induction_on s
(take H, or.elim H false.elim (assume H, H))
(take y s,
assume IH : x ∈ s x ∈ t → x ∈ s ++ t,
assume H : x ∈ y::s x ∈ t,
or.elim H
(assume H1,
or.elim H1
(take H2 : x = y, or.inl H2)
(take H2 : x ∈ s, or.inr (IH (or.inl H2))))
(assume H1 : x ∈ t, or.inr (IH (or.inr H1))))
theorem mem.concat (x : T) (s t : list T) : x ∈ s ++ t ↔ x ∈ s x ∈ t :=
iff.intro mem.concat_imp_or mem.or_imp_concat
theorem mem.split {x : T} {l : list T} : x ∈ l → ∃s t : list T, l = s ++ (x::t) :=
induction_on l
(take H : x ∈ nil, false.elim (iff.elim_left !mem.nil H))
(take y l,
assume IH : x ∈ l → ∃s t : list T, l = s ++ (x::t),
assume H : x ∈ y::l,
or.elim H
(assume H1 : x = y,
exists.intro nil (!exists.intro (H1 ▸ rfl)))
(assume H1 : x ∈ l,
obtain s (H2 : ∃t : list T, l = s ++ (x::t)), from IH H1,
obtain t (H3 : l = s ++ (x::t)), from H2,
have H4 : y :: l = (y::s) ++ (x::t),
from H3 ▸ rfl,
!exists.intro (!exists.intro H4)))
definition mem.is_decidable [instance] (H : decidable_eq T) (x : T) (l : list T) : decidable (x ∈ l) :=
rec_on l
(decidable.inr (not_of_iff_false !mem.nil))
(take (h : T) (l : list T) (iH : decidable (x ∈ l)),
show decidable (x ∈ h::l), from
decidable.rec_on iH
(assume Hp : x ∈ l,
decidable.rec_on (H x h)
(assume Heq : x = h,
decidable.inl (or.inl Heq))
(assume Hne : x ≠ h,
decidable.inl (or.inr Hp)))
(assume Hn : ¬x ∈ l,
decidable.rec_on (H x h)
(assume Heq : x = h,
decidable.inl (or.inl Heq))
(assume Hne : x ≠ h,
have H1 : ¬(x = h x ∈ l), from
assume H2 : x = h x ∈ l, or.elim H2
(assume Heq, absurd Heq Hne)
(assume Hp, absurd Hp Hn),
have H2 : ¬x ∈ h::l, from
iff.elim_right (not_iff_not_of_iff !mem.cons) H1,
decidable.inr H2)))
/- find -/
section
variable [H : decidable_eq T]
include H
definition find (x : T) : list T → nat :=
rec 0 (λy l b, if x = y then 0 else succ b)
theorem find.nil (x : T) : find x nil = 0
theorem find.cons (x y : T) (l : list T) : find x (y::l) = if x = y then 0 else succ (find x l)
theorem find.not_mem {l : list T} {x : T} : ¬x ∈ l → find x l = length l :=
rec_on l
(assume P₁ : ¬x ∈ nil, rfl)
(take y l,
assume iH : ¬x ∈ l → find x l = length l,
assume P₁ : ¬x ∈ y::l,
have P₂ : ¬(x = y x ∈ l), from iff.elim_right (not_iff_not_of_iff !mem.cons) P₁,
have P₃ : ¬x = y ∧ ¬x ∈ l, from (iff.elim_left not_or_iff_not_and_not P₂),
calc
find x (y::l) = if x = y then 0 else succ (find x l) : !find.cons
... = succ (find x l) : if_neg (and.elim_left P₃)
... = succ (length l) : {iH (and.elim_right P₃)}
... = length (y::l) : !length.cons⁻¹)
end
/- nth element -/
definition nth (x : T) (l : list T) (n : nat) : T :=
nat.rec (λl, head x l) (λm f l, f (tail l)) n l
theorem nth.zero (x : T) (l : list T) : nth x l 0 = head x l
theorem nth.succ (x : T) (l : list T) (n : nat) : nth x l (succ n) = nth x (tail l) n
end list