88c659c54e
We use this option to erase proofs when generating the javascript version. The proofs are erased to minimize the size of the file that must be downloaded by users
287 lines
9 KiB
Text
287 lines
9 KiB
Text
/-
|
||
Copyright (c) 2015 Robert Y. Lewis. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Author: Robert Y. Lewis
|
||
|
||
Basic facts about the positive natural numbers.
|
||
|
||
Developed primarily for use in the construction of ℝ. For the most part, the only theorems here
|
||
are those needed for that construction.
|
||
|
||
-/
|
||
|
||
import data.rat.order data.nat
|
||
open nat rat subtype eq.ops
|
||
|
||
namespace pnat
|
||
|
||
definition pnat := { n : ℕ | n > 0 }
|
||
|
||
notation `ℕ+` := pnat
|
||
|
||
definition pos (n : ℕ) (H : n > 0) : ℕ+ := tag n H
|
||
|
||
definition nat_of_pnat (p : ℕ+) : ℕ := elt_of p
|
||
reserve postfix `~`:std.prec.max_plus
|
||
local postfix ~ := nat_of_pnat
|
||
|
||
theorem pnat_pos (p : ℕ+) : p~ > 0 := has_property p
|
||
|
||
definition add (p q : ℕ+) : ℕ+ :=
|
||
tag (p~ + q~) (nat.add_pos (pnat_pos p) (pnat_pos q))
|
||
infix `+` := add
|
||
|
||
definition mul (p q : ℕ+) : ℕ+ :=
|
||
tag (p~ * q~) (nat.mul_pos (pnat_pos p) (pnat_pos q))
|
||
infix `*` := mul
|
||
|
||
definition le (p q : ℕ+) := p~ ≤ q~
|
||
infix `≤` := le
|
||
notation p `≥` q := q ≤ p
|
||
|
||
definition lt (p q : ℕ+) := p~ < q~
|
||
infix `<` := lt
|
||
|
||
protected theorem pnat.eq {p q : ℕ+} : p~ = q~ → p = q :=
|
||
subtype.eq
|
||
|
||
definition pnat_le_decidable [instance] (p q : ℕ+) : decidable (p ≤ q) :=
|
||
nat.decidable_le p~ q~
|
||
|
||
definition pnat_lt_decidable [instance] {p q : ℕ+} : decidable (p < q) :=
|
||
nat.decidable_lt p~ q~
|
||
|
||
theorem le.trans {p q r : ℕ+} (H1 : p ≤ q) (H2 : q ≤ r) : p ≤ r := nat.le.trans H1 H2
|
||
|
||
definition max (p q : ℕ+) :=
|
||
tag (nat.max p~ q~) (nat.lt_of_lt_of_le (!pnat_pos) (!le_max_right))
|
||
|
||
theorem max_right (a b : ℕ+) : max a b ≥ b := !le_max_right
|
||
|
||
theorem max_left (a b : ℕ+) : max a b ≥ a := !le_max_left
|
||
|
||
theorem max_eq_right {a b : ℕ+} (H : a < b) : max a b = b :=
|
||
pnat.eq (nat.max_eq_right' H)
|
||
|
||
theorem max_eq_left {a b : ℕ+} (H : ¬ a < b) : max a b = a :=
|
||
pnat.eq (nat.max_eq_left' H)
|
||
|
||
theorem le_of_lt {a b : ℕ+} : a < b → a ≤ b := nat.le_of_lt
|
||
|
||
theorem not_lt_of_ge {a b : ℕ+} : a ≤ b → ¬ (b < a) := nat.not_lt_of_ge
|
||
|
||
theorem le_of_not_gt {a b : ℕ+} : ¬ a < b → b ≤ a := nat.le_of_not_gt
|
||
|
||
theorem eq_of_le_of_ge {a b : ℕ+} (H1 : a ≤ b) (H2 : b ≤ a) : a = b :=
|
||
pnat.eq (nat.eq_of_le_of_ge H1 H2)
|
||
|
||
theorem le.refl (a : ℕ+) : a ≤ a := !nat.le.refl
|
||
|
||
notation 2 := (tag 2 dec_trivial : ℕ+)
|
||
notation 3 := (tag 3 dec_trivial : ℕ+)
|
||
definition pone : ℕ+ := tag 1 dec_trivial
|
||
|
||
definition rat_of_pnat [reducible] (n : ℕ+) : ℚ := n~
|
||
|
||
theorem pnat.to_rat_of_nat (n : ℕ+) : rat_of_pnat n = of_nat n~ := rfl
|
||
|
||
-- these will come in rat
|
||
|
||
theorem rat_of_nat_nonneg (n : ℕ) : 0 ≤ of_nat n := trivial
|
||
|
||
theorem rat_of_pnat_ge_one (n : ℕ+) : rat_of_pnat n ≥ 1 :=
|
||
(iff.mpr !of_nat_le_of_nat) (pnat_pos n)
|
||
|
||
theorem rat_of_pnat_is_pos (n : ℕ+) : rat_of_pnat n > 0 :=
|
||
(iff.mpr !of_nat_pos) (pnat_pos n)
|
||
|
||
theorem of_nat_le_of_nat_of_le {m n : ℕ} (H : m ≤ n) : of_nat m ≤ of_nat n :=
|
||
(iff.mpr !of_nat_le_of_nat) H
|
||
|
||
theorem of_nat_lt_of_nat_of_lt {m n : ℕ} (H : m < n) : of_nat m < of_nat n :=
|
||
(iff.mpr !of_nat_lt_of_nat) H
|
||
|
||
theorem rat_of_pnat_le_of_pnat_le {m n : ℕ+} (H : m ≤ n) : rat_of_pnat m ≤ rat_of_pnat n :=
|
||
of_nat_le_of_nat_of_le H
|
||
|
||
theorem rat_of_pnat_lt_of_pnat_lt {m n : ℕ+} (H : m < n) : rat_of_pnat m < rat_of_pnat n :=
|
||
of_nat_lt_of_nat_of_lt H
|
||
|
||
theorem pnat_le_of_rat_of_pnat_le {m n : ℕ+} (H : rat_of_pnat m ≤ rat_of_pnat n) : m ≤ n :=
|
||
(iff.mp !of_nat_le_of_nat) H
|
||
|
||
definition inv (n : ℕ+) : ℚ := (1 : ℚ) / rat_of_pnat n
|
||
postfix `⁻¹` := inv
|
||
|
||
theorem inv_pos (n : ℕ+) : n⁻¹ > 0 := div_pos_of_pos !rat_of_pnat_is_pos
|
||
|
||
theorem inv_le_one (n : ℕ+) : n⁻¹ ≤ (1 : ℚ) :=
|
||
begin
|
||
rewrite [↑inv, -one_div_one],
|
||
apply div_le_div_of_le,
|
||
apply rat.zero_lt_one,
|
||
apply rat_of_pnat_ge_one
|
||
end
|
||
|
||
theorem inv_lt_one_of_gt {n : ℕ+} (H : n~ > 1) : n⁻¹ < (1 : ℚ) :=
|
||
begin
|
||
rewrite [↑inv, -one_div_one],
|
||
apply div_lt_div_of_lt,
|
||
apply rat.zero_lt_one,
|
||
rewrite pnat.to_rat_of_nat,
|
||
apply (of_nat_lt_of_nat_of_lt H)
|
||
end
|
||
|
||
theorem pone_inv : pone⁻¹ = 1 := rfl
|
||
|
||
theorem add_invs_nonneg (m n : ℕ+) : 0 ≤ m⁻¹ + n⁻¹ :=
|
||
begin
|
||
apply rat.le_of_lt,
|
||
apply rat.add_pos,
|
||
repeat apply inv_pos
|
||
end
|
||
|
||
theorem one_mul (n : ℕ+) : pone * n = n :=
|
||
begin
|
||
apply pnat.eq,
|
||
rewrite [↑pone, ↑mul, ↑nat_of_pnat, one_mul]
|
||
end
|
||
|
||
theorem pone_le (n : ℕ+) : pone ≤ n :=
|
||
succ_le_of_lt (pnat_pos n)
|
||
|
||
theorem pnat_to_rat_mul (a b : ℕ+) : rat_of_pnat (a * b) = rat_of_pnat a * rat_of_pnat b := rfl
|
||
|
||
theorem mul_lt_mul_left (a b c : ℕ+) (H : a < b) : a * c < b * c :=
|
||
nat.mul_lt_mul_of_pos_right H !pnat_pos
|
||
|
||
theorem one_lt_two : pone < 2 := !nat.le.refl
|
||
|
||
theorem inv_two_mul_lt_inv (n : ℕ+) : (2 * n)⁻¹ < n⁻¹ :=
|
||
begin
|
||
rewrite ↑inv,
|
||
apply div_lt_div_of_lt,
|
||
apply rat_of_pnat_is_pos,
|
||
have H : n~ < (2 * n)~, begin
|
||
rewrite -one_mul at {1},
|
||
apply mul_lt_mul_left,
|
||
apply one_lt_two
|
||
end,
|
||
apply of_nat_lt_of_nat_of_lt,
|
||
apply H
|
||
end
|
||
|
||
theorem inv_two_mul_le_inv (n : ℕ+) : (2 * n)⁻¹ ≤ n⁻¹ := rat.le_of_lt !inv_two_mul_lt_inv
|
||
|
||
theorem inv_ge_of_le {p q : ℕ+} (H : p ≤ q) : q⁻¹ ≤ p⁻¹ :=
|
||
div_le_div_of_le !rat_of_pnat_is_pos (rat_of_pnat_le_of_pnat_le H)
|
||
|
||
theorem inv_gt_of_lt {p q : ℕ+} (H : p < q) : q⁻¹ < p⁻¹ :=
|
||
div_lt_div_of_lt !rat_of_pnat_is_pos (rat_of_pnat_lt_of_pnat_lt H)
|
||
|
||
theorem ge_of_inv_le {p q : ℕ+} (H : p⁻¹ ≤ q⁻¹) : q ≤ p :=
|
||
pnat_le_of_rat_of_pnat_le (le_of_div_le !rat_of_pnat_is_pos H)
|
||
|
||
theorem two_mul (p : ℕ+) : rat_of_pnat (2 * p) = (1 + 1) * rat_of_pnat p :=
|
||
by rewrite pnat_to_rat_mul
|
||
|
||
theorem add_halves (p : ℕ+) : (2 * p)⁻¹ + (2 * p)⁻¹ = p⁻¹ :=
|
||
begin
|
||
rewrite [↑inv, -(@add_halves (1 / (rat_of_pnat p))), *div_div_eq_div_mul'],
|
||
have H : rat_of_pnat (2 * p) = rat_of_pnat p * (1 + 1), by rewrite [rat.mul.comm, two_mul],
|
||
rewrite *H
|
||
end
|
||
|
||
theorem add_halves_double (m n : ℕ+) :
|
||
m⁻¹ + n⁻¹ = ((2 * m)⁻¹ + (2 * n)⁻¹) + ((2 * m)⁻¹ + (2 * n)⁻¹) :=
|
||
have hsimp [visible] : ∀ a b : ℚ, (a + a) + (b + b) = (a + b) + (a + b),
|
||
by intros; rewrite [rat.add.assoc, -(rat.add.assoc a b b), {_+b}rat.add.comm, -*rat.add.assoc],
|
||
by rewrite [-add_halves m, -add_halves n, hsimp]
|
||
|
||
theorem inv_mul_eq_mul_inv {p q : ℕ+} : (p * q)⁻¹ = p⁻¹ * q⁻¹ :=
|
||
by rewrite [↑inv, pnat_to_rat_mul, one_div_mul_one_div''']
|
||
|
||
theorem inv_mul_le_inv (p q : ℕ+) : (p * q)⁻¹ ≤ q⁻¹ :=
|
||
begin
|
||
rewrite [inv_mul_eq_mul_inv, -{q⁻¹}rat.one_mul at {2}],
|
||
apply rat.mul_le_mul,
|
||
apply inv_le_one,
|
||
apply rat.le.refl,
|
||
apply rat.le_of_lt,
|
||
apply inv_pos,
|
||
apply rat.le_of_lt rat.zero_lt_one
|
||
end
|
||
|
||
theorem pnat_mul_le_mul_left' (a b c : ℕ+) (H : a ≤ b) : c * a ≤ c * b :=
|
||
nat.mul_le_mul_of_nonneg_left H (nat.le_of_lt !pnat_pos)
|
||
|
||
theorem mul.assoc (a b c : ℕ+) : a * b * c = a * (b * c) :=
|
||
pnat.eq !nat.mul.assoc
|
||
|
||
theorem mul.comm (a b : ℕ+) : a * b = b * a :=
|
||
pnat.eq !nat.mul.comm
|
||
|
||
theorem add.assoc (a b c : ℕ+) : a + b + c = a + (b + c) :=
|
||
pnat.eq !nat.add.assoc
|
||
|
||
theorem mul_le_mul_left (p q : ℕ+) : q ≤ p * q :=
|
||
begin
|
||
rewrite [-one_mul at {1}, mul.comm, mul.comm p],
|
||
apply pnat_mul_le_mul_left',
|
||
apply pone_le
|
||
end
|
||
|
||
theorem mul_le_mul_right (p q : ℕ+) : p ≤ p * q :=
|
||
by rewrite mul.comm; apply mul_le_mul_left
|
||
|
||
theorem pnat.lt_of_not_le {p q : ℕ+} (H : ¬ p ≤ q) : q < p :=
|
||
nat.lt_of_not_ge H
|
||
|
||
theorem inv_cancel_left (p : ℕ+) : rat_of_pnat p * p⁻¹ = (1 : ℚ) :=
|
||
mul_one_div_cancel (ne.symm (rat.ne_of_lt !rat_of_pnat_is_pos))
|
||
|
||
theorem inv_cancel_right (p : ℕ+) : p⁻¹ * rat_of_pnat p = (1 : ℚ) :=
|
||
by rewrite rat.mul.comm; apply inv_cancel_left
|
||
|
||
theorem lt_add_left (p q : ℕ+) : p < p + q :=
|
||
begin
|
||
have H : p~ < p~ + q~, begin
|
||
rewrite -nat.add_zero at {1},
|
||
apply nat.add_lt_add_left,
|
||
apply pnat_pos
|
||
end,
|
||
apply H
|
||
end
|
||
|
||
theorem inv_add_lt_left (p q : ℕ+) : (p + q)⁻¹ < p⁻¹ :=
|
||
by apply inv_gt_of_lt; apply lt_add_left
|
||
|
||
theorem div_le_pnat (q : ℚ) (n : ℕ+) (H : q ≥ n⁻¹) : 1 / q ≤ rat_of_pnat n :=
|
||
begin
|
||
apply rat.div_le_of_le_mul,
|
||
apply rat.lt_of_lt_of_le,
|
||
apply inv_pos,
|
||
rotate 1,
|
||
apply H,
|
||
apply rat.le_mul_of_div_le,
|
||
apply rat_of_pnat_is_pos,
|
||
apply H
|
||
end
|
||
|
||
theorem pnat_cancel' (n m : ℕ+) : (n * n * m)⁻¹ * (rat_of_pnat n * rat_of_pnat n) = m⁻¹ :=
|
||
assert hsimp : ∀ a b c : ℚ, (a * a * (b * b * c)) = (a * b) * (a * b) * c, from
|
||
λa b c, by rewrite[-*rat.mul.assoc]; exact (!rat.mul.right_comm ▸ rfl),
|
||
by rewrite [rat.mul.comm, *inv_mul_eq_mul_inv, hsimp, *inv_cancel_left, *rat.one_mul]
|
||
|
||
definition pceil (a : ℚ) : ℕ+ := tag (ubound a) !ubound_pos
|
||
|
||
theorem pceil_helper {a : ℚ} {n : ℕ+} (H : pceil a ≤ n) (Ha : a > 0) : n⁻¹ ≤ 1 / a :=
|
||
rat.le.trans (inv_ge_of_le H) (div_le_div_of_le Ha (ubound_ge a))
|
||
|
||
theorem inv_pceil_div (a b : ℚ) (Ha : a > 0) (Hb : b > 0) : (pceil (a / b))⁻¹ ≤ b / a :=
|
||
div_div' ▸ div_le_div_of_le
|
||
(div_pos_of_pos (pos_div_of_pos_of_pos Hb Ha))
|
||
((div_div_eq_mul_div (ne_of_gt Hb) (ne_of_gt Ha))⁻¹ ▸
|
||
!rat.one_mul⁻¹ ▸ !ubound_ge)
|
||
|
||
end pnat
|