lean2/library/algebra/ring.lean
2014-12-15 19:07:38 -08:00

359 lines
12 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: algebra.ring
Authors: Jeremy Avigad, Leonardo de Moura
Structures with multiplicative and additive components, including semirings, rings, and fields.
The development is modeled after Isabelle's library.
-/
import logic.eq logic.connectives data.unit data.sigma data.prod
import algebra.function algebra.binary algebra.group
open eq eq.ops
namespace algebra
variable {A : Type}
/- auxiliary classes -/
structure distrib [class] (A : Type) extends has_mul A, has_add A :=
(left_distrib : ∀a b c, mul a (add b c) = add (mul a b) (mul a c))
(right_distrib : ∀a b c, mul (add a b) c = add (mul a c) (mul b c))
theorem left_distrib [s : distrib A] (a b c : A) : a * (b + c) = a * b + a * c :=
!distrib.left_distrib
theorem right_distrib [s: distrib A] (a b c : A) : (a + b) * c = a * c + b * c :=
!distrib.right_distrib
structure mul_zero [class] (A : Type) extends has_mul A, has_zero A :=
(zero_mul_eq : ∀a, mul zero a = zero)
(mul_zero_eq : ∀a, mul a zero = zero)
theorem zero_mul_eq [s : mul_zero A] (a : A) : 0 * a = 0 := !mul_zero.zero_mul_eq
theorem mul_zero_eq [s : mul_zero A] (a : A) : a * 0 = 0 := !mul_zero.mul_zero_eq
structure zero_ne_one_class [class] (A : Type) extends has_zero A, has_one A :=
(zero_ne_one : zero ≠ one)
theorem zero_ne_one [s: zero_ne_one_class A] : 0 ≠ 1 := @zero_ne_one_class.zero_ne_one A s
/- semiring -/
structure semiring [class] (A : Type) extends add_comm_monoid A, monoid A, distrib A, mul_zero A,
zero_ne_one_class A
structure comm_semiring [class] (A : Type) extends semiring A, comm_semigroup A
-- TODO: we could also define a cancelative comm_semiring, i.e. satisfying c ≠ 0 → c * a = c * b → a = b.
/- abstract divisibility -/
structure has_dvd [class] (A : Type) extends has_mul A :=
(dvd : A → A → Prop)
(dvd_intro : ∀a b c, mul a b = c → dvd a c)
(dvd_ex : ∀ a b, dvd a b → ∃c, mul a c = b)
definition dvd [s : has_dvd A] (a b : A) : Prop := has_dvd.dvd a b
infix `|` := dvd
theorem dvd.intro [s : has_dvd A] {a b c : A} : a * b = c → a | c := !has_dvd.dvd_intro
theorem dvd.ex [s : has_dvd A] {a b : A} : a | b → ∃c, a * c = b := !has_dvd.dvd_ex
theorem dvd.elim [s : has_dvd A] {P : Prop} {a b : A} (H₁ : a | b) (H₂ : ∀c, a * c = b → P) : P :=
exists.elim (dvd.ex H₁) H₂
structure comm_semiring_dvd [class] (A : Type) extends comm_semiring A, has_dvd A
section comm_semiring_dvd
variables [s : comm_semiring_dvd A] (a b c : A)
include s
theorem dvd.refl : a | a := dvd.intro (!mul.right_id)
theorem dvd.trans {a b c : A} (H₁ : a | b) (H₂ : b | c) : a | c :=
dvd.elim H₁
(take d, assume H₃ : a * d = b,
dvd.elim H₂
(take e, assume H₄ : b * e = c,
@dvd.intro _ _ _ (d * e) _
(calc
a * (d * e) = (a * d) * e : mul.assoc
... = b * e : H₃
... = c : H₄)))
theorem eq_zero_of_zero_dvd {H : 0 | a} : a = 0 :=
dvd.elim H (take c, assume H' : 0 * c = a, (H')⁻¹ ⬝ !zero_mul_eq)
theorem dvd_zero : a | 0 := dvd.intro !mul_zero_eq
theorem one_dvd : 1 | a := dvd.intro !mul.left_id
theorem dvd_mul_right : a | a * b := dvd.intro rfl
theorem dvd_mul_left : a | b * a := mul.comm a b ▸ dvd_mul_right a b
theorem dvd_mul_of_dvd_left {a b : A} (H : a | b) (c : A) : a | b * c :=
dvd.elim H
(take d,
assume H₁ : a * d = b,
dvd.intro
(calc
a * (d * c) = a * d * c : (!mul.assoc)⁻¹
... = b * c : H₁))
theorem dvd_mul_of_dvd_right {a b : A} (H : a | b) (c : A) : a | c * b :=
!mul.comm ▸ (dvd_mul_of_dvd_left H _)
theorem mul_dvd_mul {a b c d : A} (dvd_ab : a | b) (dvd_cd : c | d) : a * c | b * d :=
dvd.elim dvd_ab
(take e, assume Haeb : a * e = b,
dvd.elim dvd_cd
(take f, assume Hcfd : c * f = d,
dvd.intro
(calc
a * c * (e * f) = a * (c * (e * f)) : mul.assoc
... = a * (e * (c * f)) : mul.left_comm
... = a * e * (c * f) : (!mul.assoc)⁻¹
... = b * (c * f) : Haeb
... = b * d : Hcfd)))
theorem dvd_of_mul_right_dvd {a b c : A} (H : a * b | c) : a | c :=
dvd.elim H (take d, assume Habdc : a * b * d = c, dvd.intro (!mul.assoc⁻¹ ⬝ Habdc))
theorem dvd_of_mul_left_dvd {a b c : A} (H : a * b | c) : b | c :=
dvd_of_mul_right_dvd (mul.comm a b ▸ H)
theorem dvd_add {a b c : A} (Hab : a | b) (Hac : a | c) : a | b + c :=
dvd.elim Hab
(take d, assume Hadb : a * d = b,
dvd.elim Hac
(take e, assume Haec : a * e = c,
dvd.intro (show a * (d + e) = b + c, from Hadb ▸ Haec ▸ left_distrib a d e)))
end comm_semiring_dvd
/- ring -/
structure ring [class] (A : Type) extends add_comm_group A, monoid A, distrib A, zero_ne_one_class A
definition ring.to_semiring [instance] [s : ring A] : semiring A :=
semiring.mk ring.add ring.add_assoc !ring.zero ring.add_left_id
add.right_id -- note: we've shown that add_right_id follows from add_left_id in add_comm_group
ring.add_comm ring.mul ring.mul_assoc !ring.one ring.mul_left_id ring.mul_right_id
ring.left_distrib ring.right_distrib
(take a,
have H : 0 * a + 0 = 0 * a + 0 * a, from
calc
0 * a + 0 = 0 * a : add.right_id
... = (0 + 0) * a : {(add.right_id 0)⁻¹}
... = 0 * a + 0 * a : ring.right_distrib,
show 0 * a = 0, from (add.left_cancel H)⁻¹)
(take a,
have H : a * 0 + 0 = a * 0 + a * 0, from
calc
a * 0 + 0 = a * 0 : add.right_id
... = a * (0 + 0) : {(add.right_id 0)⁻¹}
... = a * 0 + a * 0 : ring.left_distrib,
show a * 0 = 0, from (add.left_cancel H)⁻¹)
!ring.zero_ne_one
section
variables [s : ring A] (a b c d e : A)
include s
theorem neg_mul_eq_neg_mul : -(a * b) = -a * b :=
neg_eq_of_add_eq_zero
(calc
a * b + -a * b = (a + -a) * b : right_distrib
... = 0 * b : add.right_inv
... = 0 : zero_mul_eq)
theorem neg_mul_eq_mul_neg : -(a * b) = a * -b :=
neg_eq_of_add_eq_zero
(calc
a * b + a * -b = a * (b + -b) : left_distrib
... = a * 0 : add.right_inv
... = 0 : mul_zero_eq)
theorem neg_mul_neg_eq : -a * -b = a * b :=
calc
-a * -b = -(a * -b) : !neg_mul_eq_neg_mul⁻¹
... = - -(a * b) : neg_mul_eq_mul_neg
... = a * b : neg_neg_eq
theorem neg_mul_comm : -a * b = a * -b := !neg_mul_eq_neg_mul⁻¹ ⬝ !neg_mul_eq_mul_neg
theorem mul_sub_left_distrib : a * (b - c) = a * b - a * c :=
calc
a * (b - c) = a * b + a * -c : left_distrib
... = a * b + - (a * c) : {!neg_mul_eq_mul_neg⁻¹}
... = a * b - a * c : rfl
theorem mul_sub_right_distrib : (a - b) * c = a * c - b * c :=
calc
(a - b) * c = a * c + -b * c : right_distrib
... = a * c + - (b * c) : {!neg_mul_eq_neg_mul⁻¹}
... = a * c - b * c : rfl
-- TODO: can calc mode be improved to make this easier?
-- TODO: there is also the other direction. It will be easier when we
-- have the simplifier.
theorem mul_add_eq_mul_add_iff_sub_mul_add_eq : a * e + c = b * e + d ↔ (a - b) * e + c = d :=
calc
a * e + c = b * e + d ↔ a * e + c = d + b * e : !add.comm ▸ !iff.refl
... ↔ a * e + c - b * e = d : iff.symm !sub_eq_iff_eq_add
... ↔ a * e - b * e + c = d : !sub_add_eq_add_sub ▸ !iff.refl
... ↔ (a - b) * e + c = d : !mul_sub_right_distrib ▸ !iff.refl
end
structure comm_ring [class] (A : Type) extends ring A, comm_semigroup A
definition comm_ring.to_comm_semiring [instance] [s : comm_ring A] : comm_semiring A :=
comm_semiring.mk comm_ring.add comm_ring.add_assoc (@comm_ring.zero A s)
comm_ring.add_left_id comm_ring.add_right_id comm_ring.add_comm comm_ring.mul comm_ring.mul_assoc
(@comm_ring.one A s) comm_ring.mul_left_id comm_ring.mul_right_id comm_ring.left_distrib
comm_ring.right_distrib zero_mul_eq mul_zero_eq (@comm_ring.zero_ne_one A s)
comm_ring.mul_comm
section
variables [s : comm_ring A] (a b c d e : A)
include s
-- TODO: wait for the simplifier
theorem mul_self_sub_mul_self_eq : a * a - b * b = (a + b) * (a - b) := sorry
theorem mul_self_sub_one_eq : a * a - 1 = (a + 1) * (a - 1) :=
mul.right_id 1 ▸ mul_self_sub_mul_self_eq a 1
end
structure comm_ring_dvd [class] (A : Type) extends comm_ring A, has_dvd A
definition comm_ring_dvd.to_comm_semiring_dvd [instance] [s : comm_ring_dvd A] :
comm_semiring_dvd A :=
comm_semiring_dvd.mk comm_ring_dvd.add comm_ring_dvd.add_assoc (@comm_ring_dvd.zero A s)
comm_ring_dvd.add_left_id comm_ring_dvd.add_right_id comm_ring_dvd.add_comm
comm_ring_dvd.mul comm_ring_dvd.mul_assoc (@comm_ring_dvd.one A s) comm_ring_dvd.mul_left_id
comm_ring_dvd.mul_right_id comm_ring_dvd.left_distrib comm_ring_dvd.right_distrib
zero_mul_eq mul_zero_eq (@comm_ring_dvd.zero_ne_one A s) comm_ring_dvd.mul_comm
comm_ring_dvd.dvd (@comm_ring_dvd.dvd_intro A s) (@comm_ring_dvd.dvd_ex A s)
section
variables [s : comm_ring_dvd A] (a b c d e : A)
include s
theorem dvd_neg_iff_dvd : a | -b ↔ a | b :=
iff.intro
(assume H : a | -b,
dvd.elim H
(take c, assume H' : a * c = -b,
dvd.intro
(calc
a * -c = -(a * c) : {!neg_mul_eq_mul_neg⁻¹}
... = -(-b) : H'
... = b : neg_neg_eq)))
(assume H : a | b,
dvd.elim H
(take c, assume H' : a * c = b,
dvd.intro
(calc
a * -c = -(a * c) : {!neg_mul_eq_mul_neg⁻¹}
... = -b : H')))
theorem neg_dvd_iff_dvd : -a | b ↔ a | b :=
iff.intro
(assume H : -a | b,
dvd.elim H
(take c, assume H' : -a * c = b,
dvd.intro
(calc
a * -c = -a * c : !neg_mul_comm⁻¹
... = b : H')))
(assume H : a | b,
dvd.elim H
(take c, assume H' : a * c = b,
dvd.intro
(calc
-a * -c = a * c : neg_mul_neg_eq
... = b : H')))
theorem dvd_sub (H₁ : a | b) (H₂ : a | c) : a | (b - c) :=
dvd_add H₁ (iff.elim_right !dvd_neg_iff_dvd H₂)
end
/- integral domains -/
-- TODO: some properties here may extend to cancellative semirings. It is worth the effort?
structure no_zero_divisors [class] (A : Type) extends has_mul A, has_zero A :=
(eq_zero_or_eq_zero_of_mul_eq_zero : ∀a b, mul a b = zero → a = zero b = zero)
theorem eq_zero_or_eq_zero_of_mul_eq_zero {A : Type} [s : no_zero_divisors A] {a b : A}
(H : a * b = 0) :
a = 0 b = 0 := !no_zero_divisors.eq_zero_or_eq_zero_of_mul_eq_zero H
structure integral_domain [class] (A : Type) extends comm_ring_dvd A, no_zero_divisors A
section
variables [s : integral_domain A] (a b c d e : A)
include s
theorem mul_ne_zero_of_ne_zero_ne_zero {a b : A} (H1 : a ≠ 0) (H2 : b ≠ 0) : a * b ≠ 0 :=
assume H : a * b = 0,
or.elim (eq_zero_or_eq_zero_of_mul_eq_zero H) (assume H3, H1 H3) (assume H4, H2 H4)
theorem mul.cancel_right {a b c : A} (Ha : a ≠ 0) (H : b * a = c * a) : b = c :=
have H1 : b * a - c * a = 0, from iff.mp !eq_iff_sub_eq_zero H,
have H2 : (b - c) * a = 0, from eq.trans !mul_sub_right_distrib H1,
have H3 : b - c = 0, from or_resolve_left (eq_zero_or_eq_zero_of_mul_eq_zero H2) Ha,
iff.elim_right !eq_iff_sub_eq_zero H3
theorem mul.cancel_left {a b c : A} (Ha : a ≠ 0) (H : a * b = a * c) : b = c :=
have H1 : a * b - a * c = 0, from iff.mp !eq_iff_sub_eq_zero H,
have H2 : a * (b - c) = 0, from eq.trans !mul_sub_left_distrib H1,
have H3 : b - c = 0, from or_resolve_right (eq_zero_or_eq_zero_of_mul_eq_zero H2) Ha,
iff.elim_right !eq_iff_sub_eq_zero H3
-- TODO: do we want the iff versions?
-- TODO: wait for simplifier
theorem mul_self_eq_mul_self_iff (a b : A) : a * a = b * b ↔ a = b a = -b := sorry
theorem mul_self_eq_one_iff (a : A) : a * a = 1 ↔ a = 1 a = -1 := sorry
-- TODO: c - b * c → c = 0 b = 1 and variants
theorem dvd_of_mul_dvd_mul_left {a b c : A} (Ha : a ≠ 0) (Hdvd : a * b | a * c) : b | c :=
dvd.elim Hdvd
(take d,
assume H : a * b * d = a * c,
have H1 : b * d = c, from mul.cancel_left Ha (mul.assoc a b d ▸ H),
dvd.intro H1)
theorem dvd_of_mul_dvd_mul_right {a b c : A} (Ha : a ≠ 0) (Hdvd : b * a | c * a) : b | c :=
dvd.elim Hdvd
(take d,
assume H : b * a * d = c * a,
have H1 : b * d * a = c * a, from eq.trans !mul.right_comm H,
have H2 : b * d = c, from mul.cancel_right Ha H1,
dvd.intro H2)
end
end algebra