lean2/library/logic/decidable.lean
2014-11-08 19:12:54 -08:00

100 lines
3.9 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura
import logic.connectives data.empty
inductive decidable [class] (p : Prop) : Type :=
inl : p → decidable p,
inr : ¬p → decidable p
namespace decidable
definition true_decidable [instance] : decidable true :=
inl trivial
definition false_decidable [instance] : decidable false :=
inr not_false_trivial
variables {p q : Prop}
definition rec_on_true [H : decidable p] {H1 : p → Type} {H2 : ¬p → Type} (H3 : p) (H4 : H1 H3)
: rec_on H H1 H2 :=
rec_on H (λh, H4) (λh, false.rec _ (h H3))
definition rec_on_false [H : decidable p] {H1 : p → Type} {H2 : ¬p → Type} (H3 : ¬p) (H4 : H2 H3)
: rec_on H H1 H2 :=
rec_on H (λh, false.rec _ (H3 h)) (λh, H4)
theorem irrelevant [instance] : subsingleton (decidable p) :=
subsingleton.intro (fun d1 d2,
decidable.rec
(assume Hp1 : p, decidable.rec
(assume Hp2 : p, congr_arg inl (eq.refl Hp1)) -- using proof irrelevance for Prop
(assume Hnp2 : ¬p, absurd Hp1 Hnp2)
d2)
(assume Hnp1 : ¬p, decidable.rec
(assume Hp2 : p, absurd Hp2 Hnp1)
(assume Hnp2 : ¬p, congr_arg inr (eq.refl Hnp1)) -- using proof irrelevance for Prop
d2)
d1)
definition by_cases {q : Type} [C : decidable p] (Hpq : p → q) (Hnpq : ¬p → q) : q :=
rec_on C (assume Hp, Hpq Hp) (assume Hnp, Hnpq Hnp)
theorem em (p : Prop) [H : decidable p] : p ¬p :=
by_cases (λ Hp, or.inl Hp) (λ Hnp, or.inr Hnp)
theorem by_contradiction [Hp : decidable p] (H : ¬p → false) : p :=
by_cases
(assume H1 : p, H1)
(assume H1 : ¬p, false_elim (H H1))
definition and_decidable [instance] (Hp : decidable p) (Hq : decidable q) : decidable (p ∧ q) :=
rec_on Hp
(assume Hp : p, rec_on Hq
(assume Hq : q, inl (and.intro Hp Hq))
(assume Hnq : ¬q, inr (and.not_right p Hnq)))
(assume Hnp : ¬p, inr (and.not_left q Hnp))
definition or_decidable [instance] (Hp : decidable p) (Hq : decidable q) : decidable (p q) :=
rec_on Hp
(assume Hp : p, inl (or.inl Hp))
(assume Hnp : ¬p, rec_on Hq
(assume Hq : q, inl (or.inr Hq))
(assume Hnq : ¬q, inr (or.not_intro Hnp Hnq)))
definition not_decidable [instance] (Hp : decidable p) : decidable (¬p) :=
rec_on Hp
(assume Hp, inr (not_not_intro Hp))
(assume Hnp, inl Hnp)
definition implies_decidable [instance] (Hp : decidable p) (Hq : decidable q) : decidable (p → q) :=
rec_on Hp
(assume Hp : p, rec_on Hq
(assume Hq : q, inl (assume H, Hq))
(assume Hnq : ¬q, inr (assume H : p → q, absurd (H Hp) Hnq)))
(assume Hnp : ¬p, inl (assume Hp, absurd Hp Hnp))
definition iff_decidable [instance] (Hp : decidable p) (Hq : decidable q) : decidable (p ↔ q) := _
definition decidable_iff_equiv (Hp : decidable p) (H : p ↔ q) : decidable q :=
rec_on Hp
(assume Hp : p, inl (iff.elim_left H Hp))
(assume Hnp : ¬p, inr (iff.elim_left (iff.flip_sign H) Hnp))
definition decidable_eq_equiv (Hp : decidable p) (H : p = q) : decidable q :=
decidable_iff_equiv Hp (eq_to_iff H)
protected theorem rec_subsingleton [instance] [H : decidable p] {H1 : p → Type} {H2 : ¬p → Type}
(H3 : Π(h : p), subsingleton (H1 h)) (H4 : Π(h : ¬p), subsingleton (H2 h))
: subsingleton (rec_on H H1 H2) :=
rec_on H (λh, H3 h) (λh, H4 h) --this can be proven using dependent version of "by_cases"
end decidable
definition decidable_rel {A : Type} (R : A → Prop) := Π (a : A), decidable (R a)
definition decidable_rel2 {A : Type} (R : A → A → Prop) := Π (a b : A), decidable (R a b)
definition decidable_eq (A : Type) := decidable_rel2 (@eq A)
--empty cannot depend on decidable, so we prove this here
protected definition empty.has_decidable_eq [instance] : decidable_eq empty :=
take (a b : empty), decidable.inl (!empty.elim a)