lean2/library/data/nat/wf.lean

52 lines
1.7 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura
import data.nat.order logic.wf
open nat eq.ops
namespace nat
inductive pred_rel : nat → nat → Prop :=
intro : Π (n : nat), pred_rel n (succ n)
definition not_pred_rel_zero (n : nat) : ¬ pred_rel n zero :=
have aux : ∀{m}, pred_rel n m → succ n = m, from
λm H, pred_rel.rec_on H (take n, rfl),
assume H : pred_rel n zero,
absurd (aux H) !succ_ne_zero
definition pred_rel_succ {a b : nat} (H : pred_rel a (succ b)) : b = a :=
have aux : pred (succ b) = a, from
pred_rel.rec_on H (λn, rfl),
aux
-- Predecessor relation is well-founded
definition pred_rel.wf : well_founded pred_rel :=
well_founded.intro
(λn, induction_on n
(acc.intro zero (λy (H : pred_rel y zero), absurd H (not_pred_rel_zero y)))
(λa (iH : acc pred_rel a),
acc.intro (succ a) (λy (H : pred_rel y (succ a)),
have aux : a = y, from pred_rel_succ H,
eq.rec_on aux iH)))
-- Less-than relation is well-founded
definition lt.wf [instance] : well_founded lt :=
well_founded.intro
(λn, induction_on n
(acc.intro zero (λ (y : nat) (H : y < 0),
absurd H !not_lt_zero))
(λ (n : nat) (iH : acc lt n),
acc.intro (succ n) (λ (m : nat) (H : m < succ n),
have H₁ : m < n m = n, from le_imp_lt_or_eq (succ_le_cancel (lt_imp_le_succ H)),
or.elim H₁
(assume Hlt : m < n, acc.inv iH Hlt)
(assume Heq : m = n, Heq⁻¹ ▸ iH))))
definition measure {A : Type} (f : A → nat) : A → A → Prop :=
inv_image lt f
definition measure.wf {A : Type} (f : A → nat) : well_founded (measure f) :=
inv_image.wf f lt.wf
end nat