lean2/library/standard/if.lean
Leonardo de Moura c37b5afe93 feat(library/standard): add decidable class
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2014-07-20 00:19:32 +01:00

34 lines
1.4 KiB
Text

-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura
import decidable tactic
using bit decidable tactic
definition ite (c : Bool) {H : decidable c} {A : Type} (t e : A) : A
:= rec H (assume Hc, t) (assume Hnc, e)
notation `if` c `then` t `else` e:45 := ite c t e
theorem if_pos {c : Bool} {H : decidable c} (Hc : c) {A : Type} (t e : A) : (if c then t else e) = t
:= decidable_rec
(assume Hc : c, calc (@ite c (inl Hc) A t e) = t : refl _)
(assume Hnc : ¬c, absurd_elim (@ite c (inr Hnc) A t e = t) Hc Hnc)
H
theorem if_neg {c : Bool} {H : decidable c} (Hnc : ¬c) {A : Type} (t e : A) : (if c then t else e) = e
:= decidable_rec
(assume Hc : c, absurd_elim (@ite c (inl Hc) A t e = e) Hc Hnc)
(assume Hnc : ¬c, calc (@ite c (inr Hnc) A t e) = e : refl _)
H
theorem if_t_t (c : Bool) {H : decidable c} {A : Type} (t : A) : (@ite c H A t t) = t -- check why '(if c then t else t) = t' fails
:= decidable_rec
(assume Hc : c, calc (@ite c (inl Hc) A t t) = t : refl _)
(assume Hnc : ¬c, calc (@ite c (inr Hnc) A t t) = t : refl _)
H
theorem if_true {A : Type} (t e : A) : (if true then t else e) = t
:= if_pos trivial t e
theorem if_false {A : Type} (t e : A) : (if false then t else e) = e
:= if_neg not_false_trivial t e