198 lines
7.9 KiB
Text
198 lines
7.9 KiB
Text
/-
|
||
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Floris van Doorn
|
||
|
||
Attributes of functors (full, faithful, split essentially surjective, ...)
|
||
|
||
Adjoint functors, isomorphisms and equivalences have their own file
|
||
-/
|
||
|
||
import .basic function arity
|
||
|
||
open eq functor trunc prod is_equiv iso equiv function is_trunc sigma
|
||
|
||
namespace category
|
||
variables {C D E : Precategory} {F : C ⇒ D} {G : D ⇒ C}
|
||
|
||
definition faithful [class] (F : C ⇒ D) := Π⦃c c' : C⦄ ⦃f f' : c ⟶ c'⦄, F f = F f' → f = f'
|
||
definition full [class] (F : C ⇒ D) := Π⦃c c' : C⦄, is_surjective (@(to_fun_hom F) c c')
|
||
definition fully_faithful [class] (F : C ⇒ D) := Π(c c' : C), is_equiv (@(to_fun_hom F) c c')
|
||
definition split_essentially_surjective [class] (F : C ⇒ D) := Π(d : D), Σ(c : C), F c ≅ d
|
||
definition essentially_surjective [class] (F : C ⇒ D) := Π(d : D), ∃(c : C), F c ≅ d
|
||
|
||
definition is_weak_equivalence [class] (F : C ⇒ D) :=
|
||
fully_faithful F × essentially_surjective F
|
||
|
||
definition is_equiv_of_fully_faithful [instance] (F : C ⇒ D)
|
||
[H : fully_faithful F] (c c' : C) : is_equiv (@(to_fun_hom F) c c') :=
|
||
!H
|
||
|
||
definition fully_faithful_of_is_weak_equivalence [instance] (F : C ⇒ D)
|
||
[H : is_weak_equivalence F] : fully_faithful F :=
|
||
pr1 H
|
||
|
||
definition essentially_surjective_of_is_weak_equivalence [instance] (F : C ⇒ D)
|
||
[H : is_weak_equivalence F] : essentially_surjective F :=
|
||
pr2 H
|
||
|
||
definition hom_inv [reducible] (F : C ⇒ D) [H : fully_faithful F] {c c' : C} (f : F c ⟶ F c')
|
||
: c ⟶ c' :=
|
||
(to_fun_hom F)⁻¹ᶠ f
|
||
|
||
definition hom_inv_respect_id (F : C ⇒ D) [H : fully_faithful F] (c : C) :
|
||
hom_inv F (ID (F c)) = id :=
|
||
begin
|
||
apply eq_of_fn_eq_fn' (to_fun_hom F),
|
||
exact !(right_inv (to_fun_hom F)) ⬝ !respect_id⁻¹,
|
||
end
|
||
|
||
definition hom_inv_respect_comp (F : C ⇒ D) [H : fully_faithful F] {a b c : C}
|
||
(g : F b ⟶ F c) (f : F a ⟶ F b) : hom_inv F (g ∘ f) = hom_inv F g ∘ hom_inv F f :=
|
||
begin
|
||
apply eq_of_fn_eq_fn' (to_fun_hom F),
|
||
refine !(right_inv (to_fun_hom F)) ⬝ _ ⬝ !respect_comp⁻¹,
|
||
rewrite [right_inv (to_fun_hom F), right_inv (to_fun_hom F)],
|
||
end
|
||
|
||
definition reflect_is_iso [constructor] (F : C ⇒ D) [H : fully_faithful F] {c c' : C}
|
||
(f : c ⟶ c') [H : is_iso (F f)] : is_iso f :=
|
||
begin
|
||
fconstructor,
|
||
{ exact (to_fun_hom F)⁻¹ᶠ (F f)⁻¹},
|
||
{ apply eq_of_fn_eq_fn' (to_fun_hom F),
|
||
rewrite [respect_comp,right_inv (to_fun_hom F),respect_id,left_inverse]},
|
||
{ apply eq_of_fn_eq_fn' (to_fun_hom F),
|
||
rewrite [respect_comp,right_inv (to_fun_hom F),respect_id,right_inverse]},
|
||
end
|
||
|
||
definition reflect_iso [constructor] (F : C ⇒ D) [H : fully_faithful F] {c c' : C}
|
||
(f : F c ≅ F c') : c ≅ c' :=
|
||
begin
|
||
fconstructor,
|
||
{ exact (to_fun_hom F)⁻¹ᶠ f},
|
||
{ have H : is_iso (F ((to_fun_hom F)⁻¹ᶠ f)), from
|
||
have H' : is_iso (to_hom f), from _,
|
||
(right_inv (to_fun_hom F) (to_hom f))⁻¹ ▸ H',
|
||
exact reflect_is_iso F _},
|
||
end
|
||
|
||
theorem reflect_inverse (F : C ⇒ D) [H : fully_faithful F] {c c' : C} (f : c ⟶ c')
|
||
[H' : is_iso f] : (to_fun_hom F)⁻¹ᶠ (F f)⁻¹ = f⁻¹ :=
|
||
@inverse_eq_inverse _ _ _ _ _ _ (reflect_is_iso F f) H' idp
|
||
|
||
definition hom_equiv_F_hom_F [constructor] (F : C ⇒ D)
|
||
[H : fully_faithful F] (c c' : C) : (c ⟶ c') ≃ (F c ⟶ F c') :=
|
||
equiv.mk _ !H
|
||
|
||
definition iso_equiv_F_iso_F [constructor] (F : C ⇒ D)
|
||
[H : fully_faithful F] (c c' : C) : (c ≅ c') ≃ (F c ≅ F c') :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ exact to_fun_iso F},
|
||
{ apply reflect_iso F},
|
||
{ exact abstract begin
|
||
intro f, induction f with f F', induction F' with g p q, apply iso_eq,
|
||
esimp [reflect_iso], apply right_inv end end},
|
||
{ exact abstract begin
|
||
intro f, induction f with f F', induction F' with g p q, apply iso_eq,
|
||
esimp [reflect_iso], apply right_inv end end},
|
||
end
|
||
|
||
definition full_of_fully_faithful [instance] (F : C ⇒ D) [H : fully_faithful F] : full F :=
|
||
λc c' g, tr (fiber.mk ((@(to_fun_hom F) c c')⁻¹ᶠ g) !right_inv)
|
||
|
||
definition faithful_of_fully_faithful [instance] (F : C ⇒ D) [H : fully_faithful F]
|
||
: faithful F :=
|
||
λc c' f f' p, is_injective_of_is_embedding p
|
||
|
||
definition is_embedding_of_faithful [instance] (F : C ⇒ D) [H : faithful F] (c c' : C)
|
||
: is_embedding (to_fun_hom F : c ⟶ c' → F c ⟶ F c') :=
|
||
begin
|
||
apply is_embedding_of_is_injective,
|
||
apply H
|
||
end
|
||
|
||
definition is_surjective_of_full [instance] (F : C ⇒ D) [H : full F] (c c' : C)
|
||
: is_surjective (to_fun_hom F : c ⟶ c' → F c ⟶ F c') :=
|
||
@H c c'
|
||
|
||
definition fully_faithful_of_full_of_faithful (H : faithful F) (K : full F)
|
||
: fully_faithful F :=
|
||
begin
|
||
intro c c',
|
||
apply is_equiv_of_is_surjective_of_is_embedding,
|
||
end
|
||
|
||
theorem is_prop_fully_faithful [instance] (F : C ⇒ D) : is_prop (fully_faithful F) :=
|
||
by unfold fully_faithful; exact _
|
||
|
||
theorem is_prop_full [instance] (F : C ⇒ D) : is_prop (full F) :=
|
||
by unfold full; exact _
|
||
|
||
theorem is_prop_faithful [instance] (F : C ⇒ D) : is_prop (faithful F) :=
|
||
by unfold faithful; exact _
|
||
|
||
theorem is_prop_essentially_surjective [instance] (F : C ⇒ D)
|
||
: is_prop (essentially_surjective F) :=
|
||
by unfold essentially_surjective; exact _
|
||
|
||
definition essentially_surjective_of_split_essentially_surjective [instance] (F : C ⇒ D)
|
||
[H : split_essentially_surjective F] : essentially_surjective F :=
|
||
λd, tr (H d)
|
||
|
||
definition fully_faithful_equiv (F : C ⇒ D) : fully_faithful F ≃ (faithful F × full F) :=
|
||
equiv_of_is_prop (λH, (faithful_of_fully_faithful F, full_of_fully_faithful F))
|
||
(λH, fully_faithful_of_full_of_faithful (pr1 H) (pr2 H))
|
||
|
||
/- alternative proof using direct calculation with equivalences
|
||
|
||
definition fully_faithful_equiv (F : C ⇒ D) : fully_faithful F ≃ (faithful F × full F) :=
|
||
calc
|
||
fully_faithful F
|
||
≃ (Π(c c' : C), is_embedding (to_fun_hom F) × is_surjective (to_fun_hom F))
|
||
: pi_equiv_pi_right (λc, pi_equiv_pi_right
|
||
(λc', !is_equiv_equiv_is_embedding_times_is_surjective))
|
||
... ≃ (Π(c : C), (Π(c' : C), is_embedding (to_fun_hom F)) ×
|
||
(Π(c' : C), is_surjective (to_fun_hom F)))
|
||
: pi_equiv_pi_right (λc, !equiv_prod_corec)
|
||
... ≃ (Π(c c' : C), is_embedding (to_fun_hom F)) × full F
|
||
: equiv_prod_corec
|
||
... ≃ faithful F × full F
|
||
: prod_equiv_prod_right (pi_equiv_pi_right (λc, pi_equiv_pi_right
|
||
(λc', !is_embedding_equiv_is_injective)))
|
||
-/
|
||
|
||
definition fully_faithful_compose (G : D ⇒ E) (F : C ⇒ D) [fully_faithful G] [fully_faithful F] :
|
||
fully_faithful (G ∘f F) :=
|
||
λc c', is_equiv_compose (to_fun_hom G) (to_fun_hom F)
|
||
|
||
definition full_compose (G : D ⇒ E) (F : C ⇒ D) [full G] [full F] : full (G ∘f F) :=
|
||
λc c', is_surjective_compose (to_fun_hom G) (to_fun_hom F) _ _
|
||
|
||
definition faithful_compose (G : D ⇒ E) (F : C ⇒ D) [H₁ : faithful G] [H₂ : faithful F] :
|
||
faithful (G ∘f F) :=
|
||
λc c' f f' p, H₂ (H₁ p)
|
||
|
||
definition essentially_surjective_compose (G : D ⇒ E) (F : C ⇒ D) [H₁ : essentially_surjective G]
|
||
[H₂ : essentially_surjective F] : essentially_surjective (G ∘f F) :=
|
||
begin
|
||
intro e,
|
||
induction H₁ e with v, induction v with d p,
|
||
induction H₂ d with w, induction w with c q,
|
||
exact exists.intro c (to_fun_iso G q ⬝i p)
|
||
end
|
||
|
||
definition split_essentially_surjective_compose (G : D ⇒ E) (F : C ⇒ D)
|
||
[H₁ : split_essentially_surjective G] [H₂ : split_essentially_surjective F]
|
||
: split_essentially_surjective (G ∘f F) :=
|
||
begin
|
||
intro e, induction H₁ e with d p, induction H₂ d with c q,
|
||
exact ⟨c, to_fun_iso G q ⬝i p⟩
|
||
end
|
||
|
||
/- we get the fact that the identity functor satisfies all these properties via the fact that it
|
||
is an isomorphism -/
|
||
|
||
|
||
end category
|