lean2/hott/algebra/category/functor/attributes.hlean

198 lines
7.9 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Attributes of functors (full, faithful, split essentially surjective, ...)
Adjoint functors, isomorphisms and equivalences have their own file
-/
import .basic function arity
open eq functor trunc prod is_equiv iso equiv function is_trunc sigma
namespace category
variables {C D E : Precategory} {F : C ⇒ D} {G : D ⇒ C}
definition faithful [class] (F : C ⇒ D) := Π⦃c c' : C⦄ ⦃f f' : c ⟶ c'⦄, F f = F f' → f = f'
definition full [class] (F : C ⇒ D) := Π⦃c c' : C⦄, is_surjective (@(to_fun_hom F) c c')
definition fully_faithful [class] (F : C ⇒ D) := Π(c c' : C), is_equiv (@(to_fun_hom F) c c')
definition split_essentially_surjective [class] (F : C ⇒ D) := Π(d : D), Σ(c : C), F c ≅ d
definition essentially_surjective [class] (F : C ⇒ D) := Π(d : D), ∃(c : C), F c ≅ d
definition is_weak_equivalence [class] (F : C ⇒ D) :=
fully_faithful F × essentially_surjective F
definition is_equiv_of_fully_faithful [instance] (F : C ⇒ D)
[H : fully_faithful F] (c c' : C) : is_equiv (@(to_fun_hom F) c c') :=
!H
definition fully_faithful_of_is_weak_equivalence [instance] (F : C ⇒ D)
[H : is_weak_equivalence F] : fully_faithful F :=
pr1 H
definition essentially_surjective_of_is_weak_equivalence [instance] (F : C ⇒ D)
[H : is_weak_equivalence F] : essentially_surjective F :=
pr2 H
definition hom_inv [reducible] (F : C ⇒ D) [H : fully_faithful F] {c c' : C} (f : F c ⟶ F c')
: c ⟶ c' :=
(to_fun_hom F)⁻¹ᶠ f
definition hom_inv_respect_id (F : C ⇒ D) [H : fully_faithful F] (c : C) :
hom_inv F (ID (F c)) = id :=
begin
apply eq_of_fn_eq_fn' (to_fun_hom F),
exact !(right_inv (to_fun_hom F)) ⬝ !respect_id⁻¹,
end
definition hom_inv_respect_comp (F : C ⇒ D) [H : fully_faithful F] {a b c : C}
(g : F b ⟶ F c) (f : F a ⟶ F b) : hom_inv F (g ∘ f) = hom_inv F g ∘ hom_inv F f :=
begin
apply eq_of_fn_eq_fn' (to_fun_hom F),
refine !(right_inv (to_fun_hom F)) ⬝ _ ⬝ !respect_comp⁻¹,
rewrite [right_inv (to_fun_hom F), right_inv (to_fun_hom F)],
end
definition reflect_is_iso [constructor] (F : C ⇒ D) [H : fully_faithful F] {c c' : C}
(f : c ⟶ c') [H : is_iso (F f)] : is_iso f :=
begin
fconstructor,
{ exact (to_fun_hom F)⁻¹ᶠ (F f)⁻¹},
{ apply eq_of_fn_eq_fn' (to_fun_hom F),
rewrite [respect_comp,right_inv (to_fun_hom F),respect_id,left_inverse]},
{ apply eq_of_fn_eq_fn' (to_fun_hom F),
rewrite [respect_comp,right_inv (to_fun_hom F),respect_id,right_inverse]},
end
definition reflect_iso [constructor] (F : C ⇒ D) [H : fully_faithful F] {c c' : C}
(f : F c ≅ F c') : c ≅ c' :=
begin
fconstructor,
{ exact (to_fun_hom F)⁻¹ᶠ f},
{ have H : is_iso (F ((to_fun_hom F)⁻¹ᶠ f)), from
have H' : is_iso (to_hom f), from _,
(right_inv (to_fun_hom F) (to_hom f))⁻¹ ▸ H',
exact reflect_is_iso F _},
end
theorem reflect_inverse (F : C ⇒ D) [H : fully_faithful F] {c c' : C} (f : c ⟶ c')
[H' : is_iso f] : (to_fun_hom F)⁻¹ᶠ (F f)⁻¹ = f⁻¹ :=
@inverse_eq_inverse _ _ _ _ _ _ (reflect_is_iso F f) H' idp
definition hom_equiv_F_hom_F [constructor] (F : C ⇒ D)
[H : fully_faithful F] (c c' : C) : (c ⟶ c') ≃ (F c ⟶ F c') :=
equiv.mk _ !H
definition iso_equiv_F_iso_F [constructor] (F : C ⇒ D)
[H : fully_faithful F] (c c' : C) : (c ≅ c') ≃ (F c ≅ F c') :=
begin
fapply equiv.MK,
{ exact to_fun_iso F},
{ apply reflect_iso F},
{ exact abstract begin
intro f, induction f with f F', induction F' with g p q, apply iso_eq,
esimp [reflect_iso], apply right_inv end end},
{ exact abstract begin
intro f, induction f with f F', induction F' with g p q, apply iso_eq,
esimp [reflect_iso], apply right_inv end end},
end
definition full_of_fully_faithful [instance] (F : C ⇒ D) [H : fully_faithful F] : full F :=
λc c' g, tr (fiber.mk ((@(to_fun_hom F) c c')⁻¹ᶠ g) !right_inv)
definition faithful_of_fully_faithful [instance] (F : C ⇒ D) [H : fully_faithful F]
: faithful F :=
λc c' f f' p, is_injective_of_is_embedding p
definition is_embedding_of_faithful [instance] (F : C ⇒ D) [H : faithful F] (c c' : C)
: is_embedding (to_fun_hom F : c ⟶ c' → F c ⟶ F c') :=
begin
apply is_embedding_of_is_injective,
apply H
end
definition is_surjective_of_full [instance] (F : C ⇒ D) [H : full F] (c c' : C)
: is_surjective (to_fun_hom F : c ⟶ c' → F c ⟶ F c') :=
@H c c'
definition fully_faithful_of_full_of_faithful (H : faithful F) (K : full F)
: fully_faithful F :=
begin
intro c c',
apply is_equiv_of_is_surjective_of_is_embedding,
end
theorem is_prop_fully_faithful [instance] (F : C ⇒ D) : is_prop (fully_faithful F) :=
by unfold fully_faithful; exact _
theorem is_prop_full [instance] (F : C ⇒ D) : is_prop (full F) :=
by unfold full; exact _
theorem is_prop_faithful [instance] (F : C ⇒ D) : is_prop (faithful F) :=
by unfold faithful; exact _
theorem is_prop_essentially_surjective [instance] (F : C ⇒ D)
: is_prop (essentially_surjective F) :=
by unfold essentially_surjective; exact _
definition essentially_surjective_of_split_essentially_surjective [instance] (F : C ⇒ D)
[H : split_essentially_surjective F] : essentially_surjective F :=
λd, tr (H d)
definition fully_faithful_equiv (F : C ⇒ D) : fully_faithful F ≃ (faithful F × full F) :=
equiv_of_is_prop (λH, (faithful_of_fully_faithful F, full_of_fully_faithful F))
(λH, fully_faithful_of_full_of_faithful (pr1 H) (pr2 H))
/- alternative proof using direct calculation with equivalences
definition fully_faithful_equiv (F : C ⇒ D) : fully_faithful F ≃ (faithful F × full F) :=
calc
fully_faithful F
≃ (Π(c c' : C), is_embedding (to_fun_hom F) × is_surjective (to_fun_hom F))
: pi_equiv_pi_right (λc, pi_equiv_pi_right
(λc', !is_equiv_equiv_is_embedding_times_is_surjective))
... ≃ (Π(c : C), (Π(c' : C), is_embedding (to_fun_hom F)) ×
(Π(c' : C), is_surjective (to_fun_hom F)))
: pi_equiv_pi_right (λc, !equiv_prod_corec)
... ≃ (Π(c c' : C), is_embedding (to_fun_hom F)) × full F
: equiv_prod_corec
... ≃ faithful F × full F
: prod_equiv_prod_right (pi_equiv_pi_right (λc, pi_equiv_pi_right
(λc', !is_embedding_equiv_is_injective)))
-/
definition fully_faithful_compose (G : D ⇒ E) (F : C ⇒ D) [fully_faithful G] [fully_faithful F] :
fully_faithful (G ∘f F) :=
λc c', is_equiv_compose (to_fun_hom G) (to_fun_hom F)
definition full_compose (G : D ⇒ E) (F : C ⇒ D) [full G] [full F] : full (G ∘f F) :=
λc c', is_surjective_compose (to_fun_hom G) (to_fun_hom F) _ _
definition faithful_compose (G : D ⇒ E) (F : C ⇒ D) [H₁ : faithful G] [H₂ : faithful F] :
faithful (G ∘f F) :=
λc c' f f' p, H₂ (H₁ p)
definition essentially_surjective_compose (G : D ⇒ E) (F : C ⇒ D) [H₁ : essentially_surjective G]
[H₂ : essentially_surjective F] : essentially_surjective (G ∘f F) :=
begin
intro e,
induction H₁ e with v, induction v with d p,
induction H₂ d with w, induction w with c q,
exact exists.intro c (to_fun_iso G q ⬝i p)
end
definition split_essentially_surjective_compose (G : D ⇒ E) (F : C ⇒ D)
[H₁ : split_essentially_surjective G] [H₂ : split_essentially_surjective F]
: split_essentially_surjective (G ∘f F) :=
begin
intro e, induction H₁ e with d p, induction H₂ d with c q,
exact ⟨c, to_fun_iso G q ⬝i p⟩
end
/- we get the fact that the identity functor satisfies all these properties via the fact that it
is an isomorphism -/
end category