49 lines
1.5 KiB
Text
49 lines
1.5 KiB
Text
/-
|
|
Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
Module: types.arrow
|
|
Author: Floris van Doorn
|
|
|
|
Ported from Coq HoTT
|
|
Theorems about arrow types (function spaces)
|
|
-/
|
|
|
|
import types.pi
|
|
|
|
open eq equiv is_equiv funext pi equiv.ops
|
|
|
|
namespace arrow
|
|
|
|
variables {A A' : Type} {B B' : Type} {C : A → B → Type}
|
|
{a a' a'' : A} {b b' b'' : B} {f g : A → B}
|
|
|
|
-- all lemmas here are special cases of the ones for pi-types
|
|
|
|
/- Functorial action -/
|
|
variables (f0 : A' → A) (f1 : B → B')
|
|
|
|
definition arrow_functor : (A → B) → (A' → B') := pi_functor f0 (λa, f1)
|
|
|
|
/- Equivalences -/
|
|
|
|
definition is_equiv_arrow_functor
|
|
[H0 : is_equiv f0] [H1 : is_equiv f1] : is_equiv (arrow_functor f0 f1) :=
|
|
is_equiv_pi_functor f0 (λa, f1)
|
|
|
|
definition arrow_equiv_arrow_rev (f0 : A' ≃ A) (f1 : B ≃ B') : (A → B) ≃ (A' → B') :=
|
|
equiv.mk _ (is_equiv_arrow_functor f0 f1)
|
|
|
|
definition arrow_equiv_arrow (f0 : A ≃ A') (f1 : B ≃ B') : (A → B) ≃ (A' → B') :=
|
|
arrow_equiv_arrow_rev (equiv.symm f0) f1
|
|
|
|
definition arrow_equiv_arrow_right (f1 : B ≃ B') : (A → B) ≃ (A → B') :=
|
|
arrow_equiv_arrow_rev equiv.refl f1
|
|
|
|
definition arrow_equiv_arrow_left_rev (f0 : A' ≃ A) : (A → B) ≃ (A' → B) :=
|
|
arrow_equiv_arrow_rev f0 equiv.refl
|
|
|
|
definition arrow_equiv_arrow_left (f0 : A ≃ A') : (A → B) ≃ (A' → B) :=
|
|
arrow_equiv_arrow f0 equiv.refl
|
|
|
|
end arrow
|