116 lines
4.5 KiB
Text
116 lines
4.5 KiB
Text
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
|
-- Released under Apache 2.0 license as described in the file LICENSE.
|
|
-- Author: Leonardo de Moura
|
|
import .eq .quantifiers
|
|
open eq.ops
|
|
|
|
-- cast.lean
|
|
-- =========
|
|
definition cast {A B : Type} (H : A = B) (a : A) : B :=
|
|
eq.rec a H
|
|
|
|
theorem cast_refl {A : Type} (a : A) : cast (eq.refl A) a = a :=
|
|
rfl
|
|
|
|
theorem cast_proof_irrel {A B : Type} (H₁ H₂ : A = B) (a : A) : cast H₁ a = cast H₂ a :=
|
|
rfl
|
|
|
|
theorem cast_eq {A : Type} (H : A = A) (a : A) : cast H a = a :=
|
|
rfl
|
|
|
|
inductive heq {A : Type} (a : A) : Π {B : Type}, B → Prop :=
|
|
refl : heq a a
|
|
infixl `==`:50 := heq
|
|
|
|
namespace heq
|
|
theorem drec_on {A B : Type} {a : A} {b : B} {C : Π {B : Type} (b : B), a == b → Type} (H₁ : a == b) (H₂ : C a (refl a)) : C b H₁ :=
|
|
rec (λ H₁ : a == a, show C a H₁, from H₂) H₁ H₁
|
|
|
|
theorem subst {A B : Type} {a : A} {b : B} {P : ∀T : Type, T → Prop} (H₁ : a == b) (H₂ : P A a) : P B b :=
|
|
rec_on H₁ H₂
|
|
|
|
theorem symm {A B : Type} {a : A} {b : B} (H : a == b) : b == a :=
|
|
subst H (refl a)
|
|
|
|
theorem type_eq {A B : Type} {a : A} {b : B} (H : a == b) : A = B :=
|
|
subst H (eq.refl A)
|
|
|
|
theorem from_eq {A : Type} {a b : A} (H : a = b) : a == b :=
|
|
eq.subst H (refl a)
|
|
|
|
theorem trans {A B C : Type} {a : A} {b : B} {c : C} (H₁ : a == b) (H₂ : b == c) : a == c :=
|
|
subst H₂ H₁
|
|
|
|
theorem trans_left {A B : Type} {a : A} {b c : B} (H₁ : a == b) (H₂ : b = c) : a == c :=
|
|
trans H₁ (from_eq H₂)
|
|
|
|
theorem trans_right {A C : Type} {a b : A} {c : C} (H₁ : a = b) (H₂ : b == c) : a == c :=
|
|
trans (from_eq H₁) H₂
|
|
|
|
theorem to_cast_eq {A B : Type} {a : A} {b : B} (H : a == b) : cast (type_eq H) a = b :=
|
|
drec_on H !cast_eq
|
|
|
|
theorem to_eq {A : Type} {a b : A} (H : a == b) : a = b :=
|
|
calc a = cast (eq.refl A) a : !cast_eq⁻¹
|
|
... = b : to_cast_eq H
|
|
|
|
theorem elim {A B : Type} {C : Prop} {a : A} {b : B} (H₁ : a == b)
|
|
(H₂ : ∀ (Hab : A = B), cast Hab a = b → C) : C :=
|
|
H₂ (type_eq H₁) (to_cast_eq H₁)
|
|
|
|
end heq
|
|
|
|
calc_trans heq.trans
|
|
calc_trans heq.trans_left
|
|
calc_trans heq.trans_right
|
|
|
|
theorem cast_heq {A B : Type} (H : A = B) (a : A) : cast H a == a :=
|
|
have H₁ : ∀ (H : A = A) (a : A), cast H a == a, from
|
|
assume H a, heq.from_eq (cast_eq H a),
|
|
eq.subst H H₁ H a
|
|
|
|
theorem cast_eq_to_heq {A B : Type} {a : A} {b : B} {H : A = B} (H₁ : cast H a = b) : a == b :=
|
|
calc a == cast H a : heq.symm (cast_heq H a)
|
|
... = b : H₁
|
|
|
|
theorem heq.true_elim {a : Prop} (H : a == true) : a :=
|
|
eq_true_elim (heq.to_eq H)
|
|
|
|
theorem cast_trans {A B C : Type} (Hab : A = B) (Hbc : B = C) (a : A) :
|
|
cast Hbc (cast Hab a) = cast (Hab ⬝ Hbc) a :=
|
|
heq.to_eq (calc cast Hbc (cast Hab a) == cast Hab a : cast_heq Hbc (cast Hab a)
|
|
... == a : cast_heq Hab a
|
|
... == cast (Hab ⬝ Hbc) a : heq.symm (cast_heq (Hab ⬝ Hbc) a))
|
|
|
|
theorem pi_eq {A : Type} {B B' : A → Type} (H : B = B') : (Π x, B x) = (Π x, B' x) :=
|
|
H ▸ (eq.refl (Π x, B x))
|
|
|
|
theorem dcongr_arg {A : Type} {B : A → Type} (f : Πx, B x) {a b : A} (H : a = b) : f a == f b :=
|
|
have e1 : ∀ (H : B a = B a), cast H (f a) = f a, from
|
|
assume H, cast_eq H (f a),
|
|
have e2 : ∀ (H : B a = B b), cast H (f a) = f b, from
|
|
H ▸ e1,
|
|
have e3 : cast (congr_arg B H) (f a) = f b, from
|
|
e2 (congr_arg B H),
|
|
cast_eq_to_heq e3
|
|
|
|
theorem cast_app' {A : Type} {B B' : A → Type} (H : B = B') (f : Π x, B x) (a : A) :
|
|
cast (pi_eq H) f a == f a :=
|
|
have H₁ : ∀ (H : (Π x, B x) = (Π x, B x)), cast H f a == f a, from
|
|
assume H, heq.from_eq (congr_fun (cast_eq H f) a),
|
|
have H₂ : ∀ (H : (Π x, B x) = (Π x, B' x)), cast H f a == f a, from
|
|
H ▸ H₁,
|
|
H₂ (pi_eq H)
|
|
|
|
theorem cast_pull {A : Type} {B B' : A → Type} (H : B = B') (f : Π x, B x) (a : A) :
|
|
cast (pi_eq H) f a = cast (congr_fun H a) (f a) :=
|
|
heq.to_eq (calc cast (pi_eq H) f a == f a : cast_app' H f a
|
|
... == cast (congr_fun H a) (f a) : heq.symm (cast_heq (congr_fun H a) (f a)))
|
|
|
|
theorem hcongr_fun' {A : Type} {B B' : A → Type} {f : Π x, B x} {f' : Π x, B' x} (a : A)
|
|
(H₁ : f == f') (H₂ : B = B')
|
|
: f a == f' a :=
|
|
heq.elim H₁ (λ (Ht : (Π x, B x) = (Π x, B' x)) (Hw : cast Ht f = f'),
|
|
calc f a == cast (pi_eq H₂) f a : heq.symm (cast_app' H₂ f a)
|
|
... = cast Ht f a : eq.refl (cast Ht f a)
|
|
... = f' a : congr_fun Hw a)
|