lean2/library/data/finset/equiv.lean

288 lines
14 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
-/
import data.finset.card
open nat nat.finset decidable
open algebra
namespace finset
variable {A : Type}
protected definition to_nat (s : finset nat) : nat :=
nat.finset.Sum s (λ n, 2^n)
open finset (to_nat)
lemma to_nat_empty : to_nat ∅ = 0 :=
rfl
lemma to_nat_insert {n : nat} {s : finset nat} : n ∉ s → to_nat (insert n s) = 2^n + to_nat s :=
assume h, Sum_insert_of_not_mem _ h
protected definition of_nat (s : nat) : finset nat :=
{ n ∈ upto (succ s) | odd (s / 2^n) }
open finset (of_nat)
private lemma of_nat_zero : of_nat 0 = ∅ :=
rfl
private lemma odd_of_mem_of_nat {n : nat} {s : nat} : n ∈ of_nat s → odd (s / 2^n) :=
assume h, of_mem_sep h
private lemma mem_of_nat_of_odd {n : nat} {s : nat} : odd (s / 2^n) → n ∈ of_nat s :=
assume h,
have 2^n < succ s, from by_contradiction
(suppose ¬(2^n < succ s),
assert 2^n > s, from lt_of_succ_le (le_of_not_gt this),
assert s / 2^n = 0, from div_eq_zero_of_lt this,
by rewrite this at h; exact absurd h dec_trivial),
have n < succ s, from calc
n ≤ 2^n : le_pow_self dec_trivial n
... < succ s : this,
have n ∈ upto (succ s), from mem_upto_of_lt this,
mem_sep_of_mem this h
private lemma succ_mem_of_nat (n : nat) (s : nat) : succ n ∈ of_nat s ↔ n ∈ of_nat (s / 2) :=
iff.intro
(suppose succ n ∈ of_nat s,
assert odd (s / 2^(succ n)), from odd_of_mem_of_nat this,
have odd ((s / 2) / (2 ^ n)), by rewrite [pow_succ' at this, nat.div_div_eq_div_mul, mul.comm]; assumption,
show n ∈ of_nat (s / 2), from mem_of_nat_of_odd this)
(suppose n ∈ of_nat (s / 2),
assert odd ((s / 2) / (2 ^ n)), from odd_of_mem_of_nat this,
assert odd (s / 2^(succ n)), by rewrite [pow_succ', mul.comm, -nat.div_div_eq_div_mul]; assumption,
show succ n ∈ of_nat s, from mem_of_nat_of_odd this)
private lemma odd_of_zero_mem (s : nat) : 0 ∈ of_nat s ↔ odd s :=
begin
unfold of_nat, rewrite [mem_sep_eq, pow_zero, nat.div_one, mem_upto_eq],
show 0 < succ s ∧ odd s ↔ odd s, from
iff.intro
(assume h, and.right h)
(assume h, and.intro (zero_lt_succ s) h)
end
private lemma even_of_not_zero_mem (s : nat) : 0 ∉ of_nat s ↔ even s :=
have aux : 0 ∉ of_nat s ↔ ¬odd s, from not_iff_not_of_iff (odd_of_zero_mem s),
iff.intro
(suppose 0 ∉ of_nat s, even_of_not_odd (iff.mp aux this))
(suppose even s, iff.mpr aux (not_odd_of_even this))
private lemma even_to_nat (s : finset nat) : even (to_nat s) ↔ 0 ∉ s :=
finset.induction_on s dec_trivial
(λ a s nains ih,
begin
rewrite [to_nat_insert nains], apply iff.intro,
suppose even (2^a + to_nat s), by_cases
(suppose e : even (2^a), by_cases
(suppose even (to_nat s),
assert 0 ∉ s, from iff.mp ih this,
suppose 0 ∈ insert a s, or.elim (eq_or_mem_of_mem_insert this)
(suppose 0 = a, begin rewrite [-this at e], exact absurd e not_even_one end)
(by contradiction))
(suppose odd (to_nat s), absurd `even (2^a + to_nat s)` (odd_add_of_even_of_odd `even (2^a)` this)))
(suppose o : odd (2^a), by_cases
(suppose even (to_nat s), absurd `even (2^a + to_nat s)` (odd_add_of_odd_of_even `odd (2^a)` this))
(suppose odd (to_nat s), suppose 0 ∈ insert a s, or.elim (eq_or_mem_of_mem_insert this)
(suppose 0 = a,
have even (to_nat s), from iff.mpr ih (by rewrite -this at nains; exact nains),
absurd this `odd (to_nat s)`)
(suppose 0 ∈ s,
assert a ≠ 0, from suppose a = 0, by subst a; contradiction,
begin
cases a with a, exact absurd rfl `0 ≠ 0`,
have odd (2*2^a), by rewrite [pow_succ' at o, mul.comm]; exact o,
have even (2*2^a), from !even_two_mul,
exact absurd `even (2*2^a)` `odd (2*2^a)`
end))),
suppose 0 ∉ insert a s,
have a ≠ 0, from suppose a = 0, absurd (by rewrite this; apply mem_insert) `0 ∉ insert a s`,
have 0 ∉ s, from suppose 0 ∈ s, absurd (mem_insert_of_mem _ this) `0 ∉ insert a s`,
have even (to_nat s), from iff.mpr ih this,
match a with
| 0 := suppose a = 0, absurd this `a ≠ 0`
| (succ a') := suppose a = succ a',
have even (2^(succ a')), by rewrite [pow_succ', mul.comm]; apply even_two_mul,
even_add_of_even_of_even this `even (to_nat s)`
end rfl
end)
private lemma of_nat_eq_insert_zero {s : nat} : 0 ∉ of_nat s → of_nat (2^0 + s) = insert 0 (of_nat s) :=
assume h : 0 ∉ of_nat s,
assert even s, from iff.mp (even_of_not_zero_mem s) h,
have odd (s+1), from odd_succ_of_even this,
assert zmem : 0 ∈ of_nat (s+1), from iff.mpr (odd_of_zero_mem (s+1)) this,
obtain w (hw : s = 2*w), from exists_of_even `even s`,
begin
rewrite [pow_zero, add.comm, hw],
show of_nat (2*w+1) = insert 0 (of_nat (2*w)), from
finset.ext (λ n,
match n with
| 0 := iff.intro (λ h, !mem_insert) (λ h, by rewrite [hw at zmem]; exact zmem)
| succ m :=
assert d₁ : 1 / 2 = (0:nat), from dec_trivial,
assert aux : _, from calc
succ m ∈ of_nat (2 * w + 1) ↔ m ∈ of_nat ((2*w+1) / 2) : succ_mem_of_nat
... ↔ m ∈ of_nat w : by rewrite [add.comm, add_mul_div_self_left _ _ (dec_trivial : 2 > 0), d₁, zero_add]
... ↔ m ∈ of_nat (2*w / 2) : by rewrite [mul.comm, nat.mul_div_cancel _ (dec_trivial : 2 > 0)]
... ↔ succ m ∈ of_nat (2*w) : succ_mem_of_nat,
iff.intro
(λ hl, finset.mem_insert_of_mem _ (iff.mp aux hl))
(λ hr, or.elim (eq_or_mem_of_mem_insert hr)
(by contradiction)
(iff.mpr aux))
end)
end
private lemma of_nat_eq_insert : ∀ {n s : nat}, n ∉ of_nat s → of_nat (2^n + s) = insert n (of_nat s)
| 0 s h := of_nat_eq_insert_zero h
| (succ n) s h :=
have n ∉ of_nat (s / 2),
from iff.mp (not_iff_not_of_iff !succ_mem_of_nat) h,
assert ih : of_nat (2^n + s / 2) = insert n (of_nat (s / 2)), from of_nat_eq_insert this,
finset.ext (λ x,
have gen : ∀ m, m ∈ of_nat (2^(succ n) + s) ↔ m ∈ insert (succ n) (of_nat s)
| zero :=
have even (2^(succ n)), by rewrite [pow_succ', mul.comm]; apply even_two_mul,
have aux₁ : odd (2^(succ n) + s) ↔ odd s, from iff.intro
(suppose odd (2^(succ n) + s), by_contradiction
(suppose ¬ odd s,
have even s, from even_of_not_odd this,
have even (2^(succ n) + s), from even_add_of_even_of_even `even (2^(succ n))` this,
absurd `odd (2^(succ n) + s)` (not_odd_of_even this)))
(suppose odd s, odd_add_of_even_of_odd `even (2^(succ n))` this),
have aux₂ : odd s ↔ 0 ∈ insert (succ n) (of_nat s), from iff.intro
(suppose odd s, finset.mem_insert_of_mem _ (iff.mpr !odd_of_zero_mem this))
(suppose 0 ∈ insert (succ n) (of_nat s), or.elim (eq_or_mem_of_mem_insert this)
(by contradiction)
(suppose 0 ∈ of_nat s, iff.mp !odd_of_zero_mem this)),
calc
0 ∈ of_nat (2^(succ n) + s) ↔ odd (2^(succ n) + s) : odd_of_zero_mem
... ↔ odd s : aux₁
... ↔ 0 ∈ insert (succ n) (of_nat s) : aux₂
| (succ m) :=
assert aux : m ∈ insert n (of_nat (s / 2)) ↔ succ m ∈ insert (succ n) (of_nat s), from iff.intro
(assume hl, or.elim (eq_or_mem_of_mem_insert hl)
(suppose m = n, by subst m; apply mem_insert)
(suppose m ∈ of_nat (s / 2), finset.mem_insert_of_mem _ (iff.mpr !succ_mem_of_nat this)))
(assume hr, or.elim (eq_or_mem_of_mem_insert hr)
(suppose succ m = succ n,
assert m = n, by injection this; assumption,
by subst m; apply mem_insert)
(suppose succ m ∈ of_nat s, finset.mem_insert_of_mem _ (iff.mp !succ_mem_of_nat this))),
calc
succ m ∈ of_nat (2^(succ n) + s) ↔ succ m ∈ of_nat (2^n * 2 + s) : by rewrite pow_succ'
... ↔ m ∈ of_nat ((2^n * 2 + s) / 2) : succ_mem_of_nat
... ↔ m ∈ of_nat (2^n + s / 2) : by rewrite [add.comm, add_mul_div_self (dec_trivial : 2 > 0), add.comm]
... ↔ m ∈ insert n (of_nat (s / 2)) : by rewrite ih
... ↔ succ m ∈ insert (succ n) (of_nat s) : aux,
gen x)
lemma of_nat_to_nat (s : finset nat) : of_nat (to_nat s) = s :=
finset.induction_on s rfl
(λ a s nains ih, by rewrite [to_nat_insert nains, -ih at nains, of_nat_eq_insert nains, ih])
private definition predimage (s : finset nat) : finset nat :=
{ n ∈ image pred s | succ n ∈ s }
private lemma mem_image_pred_of_succ_mem {n : nat} {s : finset nat} : succ n ∈ s → n ∈ image pred s :=
assume h,
assert pred (succ n) ∈ image pred s, from mem_image_of_mem _ h,
begin rewrite [pred_succ at this], assumption end
private lemma mem_predimage_of_succ_mem {n : nat} {s : finset nat} : succ n ∈ s → n ∈ predimage s :=
assume h, begin unfold predimage, rewrite [mem_sep_eq], exact and.intro (mem_image_pred_of_succ_mem h) h end
private lemma succ_mem_of_mem_predimage {n : nat} {s : finset nat} : n ∈ predimage s → succ n ∈ s :=
begin
unfold predimage, rewrite [mem_sep_eq],
suppose n ∈ image pred s ∧ succ n ∈ s, and.right this
end
private lemma predimage_insert_zero (s : finset nat) : predimage (insert 0 s) = predimage s :=
finset.ext (λ n,
begin
unfold predimage, rewrite [*mem_sep_eq, image_insert, pred_zero], apply iff.intro,
suppose n ∈ insert 0 (image pred s) ∧ succ n ∈ insert 0 s,
have succ n ∈ s, from or.elim (eq_or_mem_of_mem_insert (and.right this))
(by contradiction)
(λ h, h),
and.intro (mem_image_pred_of_succ_mem this) this,
suppose n ∈ image pred s ∧ succ n ∈ s,
obtain h₁ h₂, from this,
and.intro (mem_insert_of_mem 0 h₁) (mem_insert_of_mem 0 h₂)
end)
private lemma predimage_insert_succ (n : nat) (s : finset nat) : predimage (insert (succ n) s) = insert n (predimage s) :=
finset.ext (λ m,
begin
unfold predimage, rewrite [*mem_sep_eq, *image_insert, pred_succ, *mem_insert_eq, *mem_sep_eq], apply iff.intro,
suppose (m = n m ∈ image pred s) ∧ (succ m = succ n succ m ∈ s),
obtain h₁ h₂, from this,
or.elim h₁
(suppose m = n, or.inl this)
(suppose m ∈ image pred s, or.elim h₂
(suppose succ m = succ n, by injection this; left; assumption)
(suppose succ m ∈ s, by right; split; repeat assumption)),
suppose m = n m ∈ image pred s ∧ succ m ∈ s, or.elim this
(suppose m = n, and.intro (or.inl this) (or.inl (by subst m)))
(suppose m ∈ image pred s ∧ succ m ∈ s,
obtain h₁ h₂, from this,
and.intro (or.inr h₁) (or.inr h₂))
end)
private lemma of_nat_div2 (s : nat) : of_nat (s / 2) = predimage (of_nat s) :=
finset.ext (λ n, iff.intro
(suppose n ∈ of_nat (s / 2),
have succ n ∈ of_nat s, from iff.mpr !succ_mem_of_nat this,
mem_predimage_of_succ_mem this)
(suppose n ∈ predimage (of_nat s),
have succ n ∈ of_nat s, from succ_mem_of_mem_predimage this,
iff.mp !succ_mem_of_nat this))
private lemma to_nat_predimage (s : finset nat) : to_nat (predimage s) = (to_nat s) / 2 :=
begin
induction s with a s nains ih,
reflexivity,
cases a with a,
{ rewrite [predimage_insert_zero, ih, to_nat_insert nains, pow_zero],
have 0 ∉ of_nat (to_nat s), begin rewrite of_nat_to_nat, exact nains end,
have even (to_nat s), from iff.mp !even_of_not_zero_mem this,
obtain (w : nat) (hw : to_nat s = 2*w), from exists_of_even this,
begin
rewrite hw,
have d₁ : 1 / 2 = (0:nat), from dec_trivial,
show 2 * w / 2 = (1 + 2 * w) / 2, by
rewrite [add_mul_div_self_left _ _ (dec_trivial : 2 > 0), mul.comm,
nat.mul_div_cancel _ (dec_trivial : 2 > 0), d₁, zero_add]
end },
{ have a ∉ predimage s, from suppose a ∈ predimage s, absurd (succ_mem_of_mem_predimage this) nains,
rewrite [predimage_insert_succ, to_nat_insert nains, pow_succ', add.comm,
add_mul_div_self (dec_trivial : 2 > 0), -ih, to_nat_insert this, add.comm] }
end
lemma to_nat_of_nat (s : nat) : to_nat (of_nat s) = s :=
nat.strong_induction_on s
(λ n ih, by_cases
(suppose n = 0, by rewrite this)
(suppose n ≠ 0,
have n / 2 < n, from div_lt_of_ne_zero this,
have to_nat (of_nat (n / 2)) = n / 2, from ih _ this,
have e₁ : to_nat (of_nat n) / 2 = n / 2, from calc
to_nat (of_nat n) / 2 = to_nat (predimage (of_nat n)) : by rewrite to_nat_predimage
... = to_nat (of_nat (n / 2)) : by rewrite of_nat_div2
... = n / 2 : this,
have e₂ : even (to_nat (of_nat n)) ↔ even n, from calc
even (to_nat (of_nat n)) ↔ 0 ∉ of_nat n : even_to_nat
... ↔ even n : even_of_not_zero_mem,
eq_of_div2_of_even e₁ e₂))
open equiv
definition finset_nat_equiv_nat : finset nat ≃ nat :=
mk to_nat of_nat of_nat_to_nat to_nat_of_nat
end finset