149 lines
4.4 KiB
Text
149 lines
4.4 KiB
Text
/-
|
||
Copyright (c) 2014-2015 Microsoft Corporation. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
|
||
Module: init.types
|
||
Authors: Leonardo de Moura, Jeremy Avigad, Floris van Doorn, Jakob von Raumer
|
||
-/
|
||
|
||
prelude
|
||
import .logic .num .wf
|
||
|
||
-- Empty type
|
||
-- ----------
|
||
|
||
namespace empty
|
||
|
||
protected theorem elim (A : Type) (H : empty) : A :=
|
||
empty.rec (λe, A) H
|
||
|
||
end empty
|
||
|
||
protected definition empty.has_decidable_eq [instance] : decidable_eq empty :=
|
||
take (a b : empty), decidable.inl (!empty.elim a)
|
||
|
||
-- Unit type
|
||
-- ---------
|
||
|
||
namespace unit
|
||
|
||
notation `⋆` := star
|
||
|
||
end unit
|
||
|
||
-- Sigma type
|
||
-- ----------
|
||
|
||
notation `Σ` binders `,` r:(scoped P, sigma P) := r
|
||
|
||
namespace sigma
|
||
notation `⟨`:max t:(foldr `,` (e r, mk e r)) `⟩`:0 := t --input ⟨ ⟩ as \< \>
|
||
|
||
namespace ops
|
||
postfix `.1`:(max+1) := pr1
|
||
postfix `.2`:(max+1) := pr2
|
||
abbreviation pr₁ := @pr1
|
||
abbreviation pr₂ := @pr2
|
||
end ops
|
||
end sigma
|
||
|
||
-- Sum type
|
||
-- --------
|
||
|
||
namespace sum
|
||
infixr ⊎ := sum
|
||
infixr + := sum
|
||
namespace low_precedence_plus
|
||
reserve infixr `+`:25 -- conflicts with notation for addition
|
||
infixr `+` := sum
|
||
end low_precedence_plus
|
||
end sum
|
||
|
||
-- Product type
|
||
-- ------------
|
||
|
||
definition pair := @prod.mk
|
||
|
||
namespace prod
|
||
|
||
-- notation for n-ary tuples
|
||
notation `(` h `,` t:(foldl `,` (e r, prod.mk r e) h) `)` := t
|
||
infixr × := prod
|
||
|
||
namespace ops
|
||
infixr * := prod
|
||
postfix `.1`:(max+1) := pr1
|
||
postfix `.2`:(max+1) := pr2
|
||
abbreviation pr₁ := @pr1
|
||
abbreviation pr₂ := @pr2
|
||
end ops
|
||
|
||
namespace low_precedence_times
|
||
|
||
reserve infixr `*`:30 -- conflicts with notation for multiplication
|
||
infixr `*` := prod
|
||
|
||
end low_precedence_times
|
||
|
||
open prod.ops
|
||
|
||
definition flip {A B : Type} (a : A × B) : B × A := pair (pr2 a) (pr1 a)
|
||
|
||
open well_founded
|
||
|
||
section
|
||
variables {A B : Type}
|
||
variable (Ra : A → A → Type)
|
||
variable (Rb : B → B → Type)
|
||
|
||
-- Lexicographical order based on Ra and Rb
|
||
inductive lex : A × B → A × B → Type :=
|
||
| left : ∀{a₁ b₁} a₂ b₂, Ra a₁ a₂ → lex (a₁, b₁) (a₂, b₂)
|
||
| right : ∀a {b₁ b₂}, Rb b₁ b₂ → lex (a, b₁) (a, b₂)
|
||
|
||
-- Relational product based on Ra and Rb
|
||
inductive rprod : A × B → A × B → Type :=
|
||
intro : ∀{a₁ b₁ a₂ b₂}, Ra a₁ a₂ → Rb b₁ b₂ → rprod (a₁, b₁) (a₂, b₂)
|
||
end
|
||
|
||
section
|
||
parameters {A B : Type}
|
||
parameters {Ra : A → A → Type} {Rb : B → B → Type}
|
||
local infix `≺`:50 := lex Ra Rb
|
||
|
||
definition lex.accessible {a} (aca : acc Ra a) (acb : ∀b, acc Rb b): ∀b, acc (lex Ra Rb) (a, b) :=
|
||
acc.rec_on aca
|
||
(λxa aca (iHa : ∀y, Ra y xa → ∀b, acc (lex Ra Rb) (y, b)),
|
||
λb, acc.rec_on (acb b)
|
||
(λxb acb
|
||
(iHb : ∀y, Rb y xb → acc (lex Ra Rb) (xa, y)),
|
||
acc.intro (xa, xb) (λp (lt : p ≺ (xa, xb)),
|
||
have aux : xa = xa → xb = xb → acc (lex Ra Rb) p, from
|
||
@prod.lex.rec_on A B Ra Rb (λp₁ p₂ h, pr₁ p₂ = xa → pr₂ p₂ = xb → acc (lex Ra Rb) p₁)
|
||
p (xa, xb) lt
|
||
(λa₁ b₁ a₂ b₂ (H : Ra a₁ a₂) (eq₂ : a₂ = xa) (eq₃ : b₂ = xb),
|
||
show acc (lex Ra Rb) (a₁, b₁), from
|
||
have Ra₁ : Ra a₁ xa, from eq.rec_on eq₂ H,
|
||
iHa a₁ Ra₁ b₁)
|
||
(λa b₁ b₂ (H : Rb b₁ b₂) (eq₂ : a = xa) (eq₃ : b₂ = xb),
|
||
show acc (lex Ra Rb) (a, b₁), from
|
||
have Rb₁ : Rb b₁ xb, from eq.rec_on eq₃ H,
|
||
have eq₂' : xa = a, from eq.rec_on eq₂ rfl,
|
||
eq.rec_on eq₂' (iHb b₁ Rb₁)),
|
||
aux rfl rfl)))
|
||
|
||
-- The lexicographical order of well founded relations is well-founded
|
||
definition lex.wf (Ha : well_founded Ra) (Hb : well_founded Rb) : well_founded (lex Ra Rb) :=
|
||
well_founded.intro (λp, destruct p (λa b, lex.accessible (Ha a) (well_founded.apply Hb) b))
|
||
|
||
-- Relational product is a subrelation of the lex
|
||
definition rprod.sub_lex : ∀ a b, rprod Ra Rb a b → lex Ra Rb a b :=
|
||
λa b H, prod.rprod.rec_on H (λ a₁ b₁ a₂ b₂ H₁ H₂, lex.left Rb a₂ b₂ H₁)
|
||
|
||
-- The relational product of well founded relations is well-founded
|
||
definition rprod.wf (Ha : well_founded Ra) (Hb : well_founded Rb) : well_founded (rprod Ra Rb) :=
|
||
subrelation.wf (rprod.sub_lex) (lex.wf Ha Hb)
|
||
|
||
end
|
||
|
||
end prod
|