1042f6c29d
create a logic.hlean file for further extension of the logic theory in the prelude. add distributivity lemmas for products and sums.
297 lines
11 KiB
Text
297 lines
11 KiB
Text
/-
|
||
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Author: Floris van Doorn
|
||
|
||
Theorems about sums/coproducts/disjoint unions
|
||
-/
|
||
|
||
import .pi
|
||
|
||
open lift eq is_equiv equiv equiv.ops prod prod.ops is_trunc sigma bool
|
||
|
||
namespace sum
|
||
universe variables u v u' v'
|
||
variables {A : Type.{u}} {B : Type.{v}} (z z' : A + B) {P : A → Type.{u'}} {Q : A → Type.{v'}}
|
||
|
||
protected definition eta : sum.rec inl inr z = z :=
|
||
by induction z; all_goals reflexivity
|
||
|
||
protected definition code [unfold 3 4] : A + B → A + B → Type.{max u v}
|
||
| code (inl a) (inl a') := lift (a = a')
|
||
| code (inr b) (inr b') := lift (b = b')
|
||
| code _ _ := lift empty
|
||
|
||
protected definition decode [unfold 3 4] : Π(z z' : A + B), sum.code z z' → z = z'
|
||
| decode (inl a) (inl a') := λc, ap inl (down c)
|
||
| decode (inl a) (inr b') := λc, empty.elim (down c) _
|
||
| decode (inr b) (inl a') := λc, empty.elim (down c) _
|
||
| decode (inr b) (inr b') := λc, ap inr (down c)
|
||
|
||
variables {z z'}
|
||
protected definition encode [unfold 3 4 5] (p : z = z') : sum.code z z' :=
|
||
by induction p; induction z; all_goals exact up idp
|
||
|
||
variables (z z')
|
||
definition sum_eq_equiv [constructor] : (z = z') ≃ sum.code z z' :=
|
||
equiv.MK sum.encode
|
||
!sum.decode
|
||
abstract begin
|
||
intro c, induction z with a b, all_goals induction z' with a' b',
|
||
all_goals (esimp at *; induction c with c),
|
||
all_goals induction c, -- c either has type empty or a path
|
||
all_goals reflexivity
|
||
end end
|
||
abstract begin
|
||
intro p, induction p, induction z, all_goals reflexivity
|
||
end end
|
||
|
||
section
|
||
variables {a a' : A} {b b' : B}
|
||
definition eq_of_inl_eq_inl [unfold 5] (p : inl a = inl a' :> A + B) : a = a' :=
|
||
down (sum.encode p)
|
||
definition eq_of_inr_eq_inr [unfold 5] (p : inr b = inr b' :> A + B) : b = b' :=
|
||
down (sum.encode p)
|
||
definition empty_of_inl_eq_inr (p : inl a = inr b) : empty := down (sum.encode p)
|
||
definition empty_of_inr_eq_inl (p : inr b = inl a) : empty := down (sum.encode p)
|
||
|
||
/- Transport -/
|
||
|
||
definition sum_transport (p : a = a') (z : P a + Q a)
|
||
: p ▸ z = sum.rec (λa, inl (p ▸ a)) (λb, inr (p ▸ b)) z :=
|
||
by induction p; induction z; all_goals reflexivity
|
||
|
||
/- Pathovers -/
|
||
|
||
definition etao (p : a = a') (z : P a + Q a)
|
||
: z =[p] sum.rec (λa, inl (p ▸ a)) (λb, inr (p ▸ b)) z :=
|
||
by induction p; induction z; all_goals constructor
|
||
|
||
protected definition codeo (p : a = a') : P a + Q a → P a' + Q a' → Type.{max u' v'}
|
||
| codeo (inl x) (inl x') := lift.{u' v'} (x =[p] x')
|
||
| codeo (inr y) (inr y') := lift.{v' u'} (y =[p] y')
|
||
| codeo _ _ := lift empty
|
||
|
||
protected definition decodeo (p : a = a') : Π(z : P a + Q a) (z' : P a' + Q a'),
|
||
sum.codeo p z z' → z =[p] z'
|
||
| decodeo (inl x) (inl x') := λc, apo (λa, inl) (down c)
|
||
| decodeo (inl x) (inr y') := λc, empty.elim (down c) _
|
||
| decodeo (inr y) (inl x') := λc, empty.elim (down c) _
|
||
| decodeo (inr y) (inr y') := λc, apo (λa, inr) (down c)
|
||
|
||
variables {z z'}
|
||
protected definition encodeo {p : a = a'} {z : P a + Q a} {z' : P a' + Q a'} (q : z =[p] z')
|
||
: sum.codeo p z z' :=
|
||
by induction q; induction z; all_goals exact up idpo
|
||
|
||
variables (z z')
|
||
definition sum_pathover_equiv [constructor] (p : a = a') (z : P a + Q a) (z' : P a' + Q a')
|
||
: (z =[p] z') ≃ sum.codeo p z z' :=
|
||
equiv.MK sum.encodeo
|
||
!sum.decodeo
|
||
abstract begin
|
||
intro c, induction z with a b, all_goals induction z' with a' b',
|
||
all_goals (esimp at *; induction c with c),
|
||
all_goals induction c, -- c either has type empty or a pathover
|
||
all_goals reflexivity
|
||
end end
|
||
abstract begin
|
||
intro q, induction q, induction z, all_goals reflexivity
|
||
end end
|
||
end
|
||
|
||
/- Functorial action -/
|
||
|
||
variables {A' B' : Type} (f : A → A') (g : B → B')
|
||
definition sum_functor [unfold 7] : A + B → A' + B'
|
||
| sum_functor (inl a) := inl (f a)
|
||
| sum_functor (inr b) := inr (g b)
|
||
|
||
/- Equivalences -/
|
||
|
||
definition is_equiv_sum_functor [constructor] [Hf : is_equiv f] [Hg : is_equiv g]
|
||
: is_equiv (sum_functor f g) :=
|
||
adjointify (sum_functor f g)
|
||
(sum_functor f⁻¹ g⁻¹)
|
||
abstract begin
|
||
intro z, induction z,
|
||
all_goals (esimp; (apply ap inl | apply ap inr); apply right_inv)
|
||
end end
|
||
abstract begin
|
||
intro z, induction z,
|
||
all_goals (esimp; (apply ap inl | apply ap inr); apply right_inv)
|
||
end end
|
||
|
||
definition sum_equiv_sum_of_is_equiv [constructor] [Hf : is_equiv f] [Hg : is_equiv g]
|
||
: A + B ≃ A' + B' :=
|
||
equiv.mk _ (is_equiv_sum_functor f g)
|
||
|
||
definition sum_equiv_sum [constructor] (f : A ≃ A') (g : B ≃ B') : A + B ≃ A' + B' :=
|
||
equiv.mk _ (is_equiv_sum_functor f g)
|
||
|
||
definition sum_equiv_sum_left [constructor] (g : B ≃ B') : A + B ≃ A + B' :=
|
||
sum_equiv_sum equiv.refl g
|
||
|
||
definition sum_equiv_sum_right [constructor] (f : A ≃ A') : A + B ≃ A' + B :=
|
||
sum_equiv_sum f equiv.refl
|
||
|
||
definition flip [unfold 3] : A + B → B + A
|
||
| flip (inl a) := inr a
|
||
| flip (inr b) := inl b
|
||
|
||
definition sum_comm_equiv [constructor] (A B : Type) : A + B ≃ B + A :=
|
||
begin
|
||
fapply equiv.MK,
|
||
exact flip,
|
||
exact flip,
|
||
all_goals (intro z; induction z; all_goals reflexivity)
|
||
end
|
||
|
||
definition sum_assoc_equiv [constructor] (A B C : Type) : A + (B + C) ≃ (A + B) + C :=
|
||
begin
|
||
fapply equiv.MK,
|
||
all_goals try (intro z; induction z with u v;
|
||
all_goals try induction u; all_goals try induction v),
|
||
all_goals try (repeat append (append (apply inl) (apply inr)) assumption; now),
|
||
all_goals reflexivity
|
||
end
|
||
|
||
definition sum_empty_equiv [constructor] (A : Type) : A + empty ≃ A :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro z, induction z, assumption, contradiction},
|
||
{ exact inl},
|
||
{ intro a, reflexivity},
|
||
{ intro z, induction z, reflexivity, contradiction}
|
||
end
|
||
|
||
definition empty_sum_equiv (A : Type) : empty + A ≃ A :=
|
||
!sum_comm_equiv ⬝e !sum_empty_equiv
|
||
|
||
definition bool_equiv_unit_sum_unit : bool ≃ unit + unit :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro b, cases b, exact inl unit.star, exact inr unit.star },
|
||
{ intro s, cases s, exact bool.ff, exact bool.tt },
|
||
{ intro s, cases s, do 2 (cases a; reflexivity) },
|
||
{ intro b, cases b, do 2 reflexivity },
|
||
end
|
||
|
||
definition sum_prod_right_distrib [constructor] (A B C : Type) :
|
||
(A + B) × C ≃ (A × C) + (B × C) :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro x, cases x with ab c, cases ab with a b, exact inl (a, c), exact inr (b, c) },
|
||
{ intro x, cases x with ac bc, cases ac with a c, exact (inl a, c),
|
||
cases bc with b c, exact (inr b, c) },
|
||
{ intro x, cases x with ac bc, cases ac with a c, reflexivity, cases bc, reflexivity },
|
||
{ intro x, cases x with ab c, cases ab with a b, do 2 reflexivity }
|
||
end
|
||
|
||
definition sum_prod_left_distrib [constructor] (A B C : Type) :
|
||
A × (B + C) ≃ (A × B) + (A × C) :=
|
||
calc A × (B + C) ≃ (B + C) × A : prod_comm_equiv
|
||
... ≃ (B × A) + (C × A) : sum_prod_right_distrib
|
||
... ≃ (A × B) + (C × A) : prod_comm_equiv
|
||
... ≃ (A × B) + (A × C) : prod_comm_equiv
|
||
|
||
/- universal property -/
|
||
|
||
definition sum_rec_unc [unfold 5] {P : A + B → Type} (fg : (Πa, P (inl a)) × (Πb, P (inr b)))
|
||
: Πz, P z :=
|
||
sum.rec fg.1 fg.2
|
||
|
||
definition is_equiv_sum_rec [constructor] (P : A + B → Type)
|
||
: is_equiv (sum_rec_unc : (Πa, P (inl a)) × (Πb, P (inr b)) → Πz, P z) :=
|
||
begin
|
||
apply adjointify sum_rec_unc (λf, (λa, f (inl a), λb, f (inr b))),
|
||
intro f, apply eq_of_homotopy, intro z, focus (induction z; all_goals reflexivity),
|
||
intro h, induction h with f g, reflexivity
|
||
end
|
||
|
||
definition equiv_sum_rec [constructor] (P : A + B → Type)
|
||
: (Πa, P (inl a)) × (Πb, P (inr b)) ≃ Πz, P z :=
|
||
equiv.mk _ !is_equiv_sum_rec
|
||
|
||
definition imp_prod_imp_equiv_sum_imp [constructor] (A B C : Type)
|
||
: (A → C) × (B → C) ≃ (A + B → C) :=
|
||
!equiv_sum_rec
|
||
|
||
/- truncatedness -/
|
||
|
||
variables (A B)
|
||
theorem is_trunc_sum (n : trunc_index) [HA : is_trunc (n.+2) A] [HB : is_trunc (n.+2) B]
|
||
: is_trunc (n.+2) (A + B) :=
|
||
begin
|
||
apply is_trunc_succ_intro, intro z z',
|
||
apply is_trunc_equiv_closed_rev, apply sum_eq_equiv,
|
||
induction z with a b, all_goals induction z' with a' b', all_goals esimp,
|
||
all_goals exact _,
|
||
end
|
||
|
||
theorem is_trunc_sum_excluded (n : trunc_index) [HA : is_trunc n A] [HB : is_trunc n B]
|
||
(H : A → B → empty) : is_trunc n (A + B) :=
|
||
begin
|
||
induction n with n IH,
|
||
{ exfalso, exact H !center !center},
|
||
{ clear IH, induction n with n IH,
|
||
{ apply is_hprop.mk, intros x y,
|
||
induction x, all_goals induction y, all_goals esimp,
|
||
all_goals try (exfalso;apply H;assumption;assumption), all_goals apply ap _ !is_hprop.elim},
|
||
{ apply is_trunc_sum}}
|
||
end
|
||
|
||
variable {B}
|
||
definition is_contr_sum_left [HA : is_contr A] (H : ¬B) : is_contr (A + B) :=
|
||
is_contr.mk (inl !center)
|
||
(λx, sum.rec_on x (λa, ap inl !center_eq) (λb, empty.elim (H b)))
|
||
|
||
/-
|
||
Sums are equivalent to dependent sigmas where the first component is a bool.
|
||
|
||
The current construction only works for A and B in the same universe.
|
||
If we need it for A and B in different universes, we need to insert some lifts.
|
||
-/
|
||
|
||
definition sum_of_sigma_bool {A B : Type.{u}} (v : Σ(b : bool), bool.rec A B b) : A + B :=
|
||
by induction v with b x; induction b; exact inl x; exact inr x
|
||
|
||
definition sigma_bool_of_sum {A B : Type.{u}} (z : A + B) : Σ(b : bool), bool.rec A B b :=
|
||
by induction z with a b; exact ⟨ff, a⟩; exact ⟨tt, b⟩
|
||
|
||
definition sum_equiv_sigma_bool [constructor] (A B : Type.{u})
|
||
: A + B ≃ Σ(b : bool), bool.rec A B b :=
|
||
equiv.MK sigma_bool_of_sum
|
||
sum_of_sigma_bool
|
||
begin intro v, induction v with b x, induction b, all_goals reflexivity end
|
||
begin intro z, induction z with a b, all_goals reflexivity end
|
||
|
||
end sum
|
||
open sum pi
|
||
|
||
namespace decidable
|
||
|
||
definition decidable_equiv [constructor] (A : Type) : decidable A ≃ A + ¬A :=
|
||
begin
|
||
fapply equiv.MK:intro a;induction a:try (constructor;assumption;now),
|
||
all_goals reflexivity
|
||
end
|
||
|
||
definition is_trunc_decidable [constructor] (A : Type) (n : trunc_index) [H : is_trunc n A] :
|
||
is_trunc n (decidable A) :=
|
||
begin
|
||
apply is_trunc_equiv_closed_rev,
|
||
apply decidable_equiv,
|
||
induction n with n IH,
|
||
{ apply is_contr_sum_left, exact λna, na !center},
|
||
{ apply is_trunc_sum_excluded, exact λa na, na a}
|
||
end
|
||
|
||
end decidable
|
||
|
||
attribute sum.is_trunc_sum [instance] [priority 1480]
|
||
|
||
definition tsum [constructor] {n : trunc_index} (A B : (n.+2)-Type) : (n.+2)-Type :=
|
||
trunctype.mk (A + B) _
|
||
|
||
infixr `+t`:25 := tsum
|