458 lines
17 KiB
Text
458 lines
17 KiB
Text
/-
|
||
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Author: Jeremy Avigad
|
||
|
||
Instantiates the reals as a metric space, and expresses completeness, sup, and inf in
|
||
a manner that is less constructive, but more convenient, than the way it is done in
|
||
data.real.complete.
|
||
|
||
The definitions here are noncomputable, for various reasons:
|
||
|
||
(1) We rely on the nonconstructive definition of abs.
|
||
(2) The theory of the reals uses the "some" operator e.g. to define the ceiling function.
|
||
This can't be defined constructively as an operation on the quotient, because
|
||
such a function is not continuous.
|
||
(3) We use "forall" and "exists" to say that a series converges, rather than carrying
|
||
around rates of convergence explicitly. We then use "some" whenever we need to extract
|
||
information, such as the limit.
|
||
|
||
These could be avoided in a constructive theory of analysis, but here we will not
|
||
follow that route.
|
||
-/
|
||
import .metric_space data.real.complete
|
||
open real eq.ops classical
|
||
noncomputable theory
|
||
|
||
namespace real
|
||
|
||
/- the reals form a metric space -/
|
||
|
||
protected definition to_metric_space [instance] : metric_space ℝ :=
|
||
⦃ metric_space,
|
||
dist := λ x y, abs (x - y),
|
||
dist_self := λ x, abstract by rewrite [sub_self, abs_zero] end,
|
||
eq_of_dist_eq_zero := @eq_of_abs_sub_eq_zero,
|
||
dist_comm := abs_sub,
|
||
dist_triangle := abs_sub_le
|
||
⦄
|
||
|
||
open nat
|
||
|
||
definition converges_to_seq (X : ℕ → ℝ) (y : ℝ) : Prop :=
|
||
∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : ℕ, ∀ {n}, n ≥ N → abs (X n - y) < ε
|
||
|
||
proposition converges_to_seq.intro {X : ℕ → ℝ} {y : ℝ}
|
||
(H : ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : ℕ, ∀ {n}, n ≥ N → abs (X n - y) ≤ ε) :
|
||
converges_to_seq X y :=
|
||
metric_space.converges_to_seq.intro H
|
||
|
||
notation X `⟶` y `in` `ℕ` := converges_to_seq X y
|
||
|
||
definition converges_seq [class] (X : ℕ → ℝ) : Prop := ∃ y, X ⟶ y in ℕ
|
||
|
||
definition limit_seq (X : ℕ → ℝ) [H : converges_seq X] : ℝ := some H
|
||
|
||
proposition converges_to_limit_seq (X : ℕ → ℝ) [H : converges_seq X] :
|
||
(X ⟶ limit_seq X in ℕ) :=
|
||
some_spec H
|
||
|
||
proposition converges_to_seq_unique {X : ℕ → ℝ} {y₁ y₂ : ℝ}
|
||
(H₁ : X ⟶ y₁ in ℕ) (H₂ : X ⟶ y₂ in ℕ) : y₁ = y₂ :=
|
||
metric_space.converges_to_seq_unique H₁ H₂
|
||
|
||
proposition eq_limit_of_converges_to_seq {X : ℕ → ℝ} (y : ℝ) (H : X ⟶ y in ℕ) :
|
||
y = @limit_seq X (exists.intro y H) :=
|
||
converges_to_seq_unique H (@converges_to_limit_seq X (exists.intro y H))
|
||
|
||
proposition converges_to_seq_constant (y : ℝ) : (λn, y) ⟶ y in ℕ :=
|
||
metric_space.converges_to_seq_constant y
|
||
|
||
/- the completeness of the reals, "translated" from data.real.complete -/
|
||
|
||
definition cauchy (X : ℕ → ℝ) := metric_space.cauchy X
|
||
|
||
section
|
||
open pnat subtype
|
||
|
||
private definition pnat.succ (n : ℕ) : ℕ+ := tag (succ n) !succ_pos
|
||
|
||
private definition r_seq_of (X : ℕ → ℝ) : r_seq := λ n, X (elt_of n)
|
||
|
||
private lemma rate_of_cauchy_aux {X : ℕ → ℝ} (H : cauchy X) :
|
||
∀ k : ℕ+, ∃ N : ℕ+, ∀ m n : ℕ+,
|
||
m ≥ N → n ≥ N → abs (X (elt_of m) - X (elt_of n)) ≤ of_rat k⁻¹ :=
|
||
take k : ℕ+,
|
||
have H1 : (rat.gt k⁻¹ (rat.of_num 0)), from !inv_pos,
|
||
have H2 : (of_rat k⁻¹ > of_rat (rat.of_num 0)), from !of_rat_lt_of_rat_of_lt H1,
|
||
obtain (N : ℕ) (H : ∀ m n, m ≥ N → n ≥ N → abs (X m - X n) < of_rat k⁻¹), from H _ H2,
|
||
exists.intro (pnat.succ N)
|
||
(take m n : ℕ+,
|
||
assume Hm : m ≥ (pnat.succ N),
|
||
assume Hn : n ≥ (pnat.succ N),
|
||
have Hm' : elt_of m ≥ N, from nat.le.trans !le_succ Hm,
|
||
have Hn' : elt_of n ≥ N, from nat.le.trans !le_succ Hn,
|
||
show abs (X (elt_of m) - X (elt_of n)) ≤ of_rat k⁻¹, from le_of_lt (H _ _ Hm' Hn'))
|
||
|
||
private definition rate_of_cauchy {X : ℕ → ℝ} (H : cauchy X) (k : ℕ+) : ℕ+ :=
|
||
some (rate_of_cauchy_aux H k)
|
||
|
||
private lemma cauchy_with_rate_of_cauchy {X : ℕ → ℝ} (H : cauchy X) :
|
||
cauchy_with_rate (r_seq_of X) (rate_of_cauchy H) :=
|
||
take k : ℕ+,
|
||
some_spec (rate_of_cauchy_aux H k)
|
||
|
||
private lemma converges_to_with_rate_of_cauchy {X : ℕ → ℝ} (H : cauchy X) :
|
||
∃ l Nb, converges_to_with_rate (r_seq_of X) l Nb :=
|
||
begin
|
||
apply exists.intro,
|
||
apply exists.intro,
|
||
apply converges_to_with_rate_of_cauchy_with_rate,
|
||
exact cauchy_with_rate_of_cauchy H
|
||
end
|
||
|
||
theorem converges_seq_of_cauchy {X : ℕ → ℝ} (H : cauchy X) : converges_seq X :=
|
||
obtain l Nb (conv : converges_to_with_rate (r_seq_of X) l Nb),
|
||
from converges_to_with_rate_of_cauchy H,
|
||
exists.intro l
|
||
(take ε : ℝ,
|
||
suppose ε > 0,
|
||
obtain (k' : ℕ) (Hn : 1 / succ k' < ε), from archimedean_small `ε > 0`,
|
||
let k : ℕ+ := tag (succ k') !succ_pos,
|
||
N : ℕ+ := Nb k in
|
||
have Hk : real.of_rat k⁻¹ < ε,
|
||
by rewrite [↑pnat.inv, of_rat_divide]; exact Hn,
|
||
exists.intro (elt_of N)
|
||
(take n : ℕ,
|
||
assume Hn : n ≥ elt_of N,
|
||
let n' : ℕ+ := tag n (nat.lt_of_lt_of_le (has_property N) Hn) in
|
||
have abs (X n - l) ≤ real.of_rat k⁻¹, from conv k n' Hn,
|
||
show abs (X n - l) < ε, from lt_of_le_of_lt this Hk))
|
||
|
||
open set
|
||
|
||
private definition exists_is_sup {X : set ℝ} (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b)) :
|
||
∃ y, is_sup X y :=
|
||
let x := some (and.left H), b := some (and.right H) in
|
||
exists_is_sup_of_inh_of_bdd X x (some_spec (and.left H)) b (some_spec (and.right H))
|
||
|
||
private definition sup_aux {X : set ℝ} (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b)) :=
|
||
some (exists_is_sup H)
|
||
|
||
private definition sup_aux_spec {X : set ℝ} (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b)) :
|
||
is_sup X (sup_aux H) :=
|
||
some_spec (exists_is_sup H)
|
||
|
||
definition sup (X : set ℝ) : ℝ :=
|
||
if H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b) then sup_aux H else 0
|
||
|
||
proposition le_sup {x : ℝ} {X : set ℝ} (Hx : x ∈ X) {b : ℝ} (Hb : ∀ x, x ∈ X → x ≤ b) :
|
||
x ≤ sup X :=
|
||
have H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b),
|
||
from and.intro (exists.intro x Hx) (exists.intro b Hb),
|
||
by+ rewrite [↑sup, dif_pos H]; exact and.left (sup_aux_spec H) x Hx
|
||
|
||
proposition sup_le {X : set ℝ} (HX : ∃ x, x ∈ X) {b : ℝ} (Hb : ∀ x, x ∈ X → x ≤ b) :
|
||
sup X ≤ b :=
|
||
have H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b),
|
||
from and.intro HX (exists.intro b Hb),
|
||
by+ rewrite [↑sup, dif_pos H]; exact and.right (sup_aux_spec H) b Hb
|
||
|
||
private definition exists_is_inf {X : set ℝ} (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x)) :
|
||
∃ y, is_inf X y :=
|
||
let x := some (and.left H), b := some (and.right H) in
|
||
exists_is_inf_of_inh_of_bdd X x (some_spec (and.left H)) b (some_spec (and.right H))
|
||
|
||
private definition inf_aux {X : set ℝ} (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x)) :=
|
||
some (exists_is_inf H)
|
||
|
||
private definition inf_aux_spec {X : set ℝ} (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x)) :
|
||
is_inf X (inf_aux H) :=
|
||
some_spec (exists_is_inf H)
|
||
|
||
definition inf (X : set ℝ) : ℝ :=
|
||
if H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x) then inf_aux H else 0
|
||
|
||
proposition inf_le {x : ℝ} {X : set ℝ} (Hx : x ∈ X) {b : ℝ} (Hb : ∀ x, x ∈ X → b ≤ x) :
|
||
inf X ≤ x :=
|
||
have H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x),
|
||
from and.intro (exists.intro x Hx) (exists.intro b Hb),
|
||
by+ rewrite [↑inf, dif_pos H]; exact and.left (inf_aux_spec H) x Hx
|
||
|
||
proposition le_inf {X : set ℝ} (HX : ∃ x, x ∈ X) {b : ℝ} (Hb : ∀ x, x ∈ X → b ≤ x) :
|
||
b ≤ inf X :=
|
||
have H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x),
|
||
from and.intro HX (exists.intro b Hb),
|
||
by+ rewrite [↑inf, dif_pos H]; exact and.right (inf_aux_spec H) b Hb
|
||
|
||
end
|
||
|
||
section inter_val
|
||
open set
|
||
|
||
-- this definition should be inherited from metric_space once a migrate is done.
|
||
definition continuous (f : ℝ → ℝ) :=
|
||
∀ x : ℝ, ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ δ : ℝ, δ > 0 ∧ ∀ x' : ℝ, abs (x - x') < δ → abs (f x - f x') < ε
|
||
|
||
private definition inter_sup (a b : ℝ) (f : ℝ → ℝ) := sup {x | x < b ∧ f x < 0}
|
||
|
||
private theorem add_midpoint {a b : ℝ} (H : a < b) : a + (b - a) / 2 < b :=
|
||
begin
|
||
rewrite [-div_sub_div_same, sub_eq_add_neg, {b / 2 + _}add.comm, -add.assoc, -sub_eq_add_neg],
|
||
apply add_lt_of_lt_sub_right,
|
||
krewrite *sub_self_div_two,
|
||
apply div_lt_div_of_lt_of_pos H two_pos
|
||
end
|
||
|
||
section
|
||
parameters {f : ℝ → ℝ} (Hf : continuous f) {a b : ℝ} (Hab : a < b) (Ha : f a < 0) (Hb : f b > 0)
|
||
include Hf Ha Hb Hab
|
||
|
||
private theorem Hinh : ∃ x, x ∈ {x | x < b ∧ f x < 0} := exists.intro a (and.intro Hab Ha)
|
||
|
||
private theorem Hmem : ∀ x, x ∈ {x | x < b ∧ f x < 0} → x ≤ b := λ x Hx, le_of_lt (and.left Hx)
|
||
|
||
private theorem Hsupleb : inter_sup a b f ≤ b := sup_le (Hinh) Hmem
|
||
|
||
private theorem sup_fn_interval_aux1 : f (inter_sup a b f) ≥ 0 :=
|
||
have ¬ f (inter_sup a b f) < 0, from
|
||
(suppose f (inter_sup a b f) < 0,
|
||
have ∃ δ, δ > (0 : ℝ) ∧ inter_sup a b f + δ < b ∧ f (inter_sup a b f + δ) < 0, begin
|
||
let Hcont := Hf (inter_sup a b f) (neg_pos_of_neg this),
|
||
cases Hcont with δ Hδ,
|
||
cases em (inter_sup a b f + δ / 2 < b),
|
||
existsi δ / 2,
|
||
split,
|
||
apply div_pos_of_pos_of_pos (and.left Hδ) two_pos,
|
||
split,
|
||
assumption,
|
||
have Habs : abs (inter_sup a b f - (inter_sup a b f + δ / 2)) < δ, begin
|
||
krewrite [sub_add_eq_sub_sub, sub_self, zero_sub, abs_neg,
|
||
abs_of_pos (div_pos_of_pos_of_pos (and.left Hδ) two_pos)],
|
||
apply div_two_lt_of_pos (and.left Hδ)
|
||
end,
|
||
let Hlt := and.right Hδ _ Habs,
|
||
let Hlt' := sub_lt_of_abs_sub_lt_left Hlt,
|
||
let Hlt'' := lt_add_of_sub_lt_right _ _ _ Hlt',
|
||
rewrite [-sub_eq_add_neg at Hlt'', sub_self at Hlt''],
|
||
assumption,
|
||
let Hble := le_of_not_gt a_1,
|
||
have Habs : abs (inter_sup a b f - b) < δ, begin
|
||
apply abs_lt_of_lt_of_neg_lt,
|
||
apply sub_lt_left_of_lt_add,
|
||
apply lt_of_le_of_lt,
|
||
apply Hsupleb,
|
||
apply lt_add_of_pos_right (and.left Hδ),
|
||
rewrite neg_sub,
|
||
apply sub_lt_left_of_lt_add,
|
||
apply lt_of_le_of_lt,
|
||
apply Hble,
|
||
apply add_lt_add_left,
|
||
apply div_two_lt_of_pos (and.left Hδ)
|
||
end,
|
||
let Hlt := and.right Hδ _ Habs,
|
||
let Hlt' := sub_lt_of_abs_sub_lt_left Hlt,
|
||
let Hlt'' := lt_add_of_sub_lt_right _ _ _ Hlt',
|
||
rewrite [-sub_eq_add_neg at Hlt'', sub_self at Hlt''],
|
||
apply absurd Hb (not_lt_of_ge (le_of_lt Hlt''))
|
||
end,
|
||
obtain δ Hδ, from this,
|
||
have inter_sup a b f + δ ∈ {x | x < b ∧ f x < 0},
|
||
from and.intro (and.left (and.right Hδ)) (and.right (and.right Hδ)),
|
||
have Hle : ¬ inter_sup a b f < inter_sup a b f + δ,
|
||
from not_lt_of_ge (le_sup this Hmem),
|
||
show false, from Hle (lt_add_of_pos_right (and.left Hδ))),
|
||
le_of_not_gt this
|
||
|
||
private theorem sup_fn_interval_aux2 : f (inter_sup a b f) ≤ 0 :=
|
||
have ¬ f (inter_sup a b f) > 0, from
|
||
(suppose f (inter_sup a b f) > 0,
|
||
have ∃ δ : ℝ, δ > 0 ∧ ∀ x' : ℝ, abs (inter_sup a b f - x') < δ → f x' > 0, begin
|
||
let Hcont := Hf (inter_sup a b f) this,
|
||
cases Hcont with δ Hδ,
|
||
existsi δ,
|
||
split,
|
||
exact and.left Hδ,
|
||
intro x Hx,
|
||
let Hlt := and.right Hδ _ Hx,
|
||
let Hlt' := sub_lt_of_abs_sub_lt_right Hlt,
|
||
rewrite sub_self at Hlt',
|
||
exact Hlt'
|
||
end,
|
||
obtain δ Hδ, from this,
|
||
have ∀ x, x ∈ {x | x < b ∧ f x < 0} → x ≤ inter_sup a b f - δ / 2, from
|
||
(take x, suppose x ∈ {x | x < b ∧ f x < 0},
|
||
have x ≤ inter_sup a b f, from le_sup this Hmem,
|
||
have ¬ x > inter_sup a b f - δ / 2, from
|
||
(assume Hngt,
|
||
have abs (inter_sup a b f - x) < δ, begin
|
||
apply abs_lt_of_lt_of_neg_lt,
|
||
apply sub_lt_of_sub_lt,
|
||
apply gt.trans,
|
||
exact Hngt,
|
||
apply sub_lt_sub_left,
|
||
exact div_two_lt_of_pos (and.left Hδ),
|
||
rewrite neg_sub,
|
||
apply lt_of_le_of_lt,
|
||
rotate 1,
|
||
apply and.left Hδ,
|
||
apply sub_nonpos_of_le,
|
||
apply le_sup,
|
||
exact this,
|
||
exact Hmem
|
||
end,
|
||
have f x > 0, from and.right Hδ _ this,
|
||
show false, from (not_lt_of_gt this) (and.right `x ∈ {x | x < b ∧ f x < 0}`)),
|
||
le_of_not_gt this),
|
||
have Hle : inter_sup a b f ≤ inter_sup a b f - δ / 2, from sup_le Hinh this,
|
||
show false, from not_le_of_gt
|
||
(sub_lt_of_pos _ (div_pos_of_pos_of_pos (and.left Hδ) (two_pos))) Hle),
|
||
le_of_not_gt this
|
||
|
||
private theorem sup_fn_interval : f (inter_sup a b f) = 0 :=
|
||
eq_of_le_of_ge sup_fn_interval_aux2 sup_fn_interval_aux1
|
||
|
||
private theorem intermediate_value_incr_aux1 : ∃ δ : ℝ, δ > 0 ∧ ∀ y, abs (b - y) < δ → f y > 0 :=
|
||
begin
|
||
let Hcont := Hf b Hb,
|
||
cases Hcont with δ Hδ,
|
||
existsi δ,
|
||
split,
|
||
exact and.left Hδ,
|
||
intro y Hy,
|
||
let Hy' := and.right Hδ _ Hy,
|
||
let Hlt := sub_lt_of_abs_sub_lt_right Hy',
|
||
rewrite sub_self at Hlt,
|
||
assumption
|
||
end
|
||
|
||
private theorem intermediate_value_incr_aux2 : ∃ δ : ℝ, δ > 0 ∧ a + δ < b ∧ f (a + δ) < 0 :=
|
||
begin
|
||
have Hnfa : - (f a) > 0, from neg_pos_of_neg Ha,
|
||
let Hcont := Hf a Hnfa,
|
||
cases Hcont with δ Hδ,
|
||
cases em (a + δ < b) with Haδ Haδ,
|
||
existsi δ / 2,
|
||
split,
|
||
exact div_pos_of_pos_of_pos (and.left Hδ) two_pos,
|
||
split,
|
||
apply lt.trans,
|
||
apply add_lt_add_left,
|
||
exact div_two_lt_of_pos (and.left Hδ),
|
||
assumption,
|
||
have Habs : abs (a - (a + δ / 2)) < δ, begin
|
||
krewrite [sub_add_eq_sub_sub, sub_self, zero_sub, abs_neg,
|
||
abs_of_pos (div_pos_of_pos_of_pos (and.left Hδ) two_pos)],
|
||
exact div_two_lt_of_pos (and.left Hδ)
|
||
end,
|
||
let Hlt := and.right Hδ _ Habs,
|
||
let Hlt' := sub_lt_of_abs_sub_lt_left Hlt,
|
||
let Hlt'' := lt_add_of_sub_lt_right _ _ _ Hlt',
|
||
rewrite [-sub_eq_add_neg at Hlt'', sub_self at Hlt''],
|
||
assumption,
|
||
existsi (b - a) / 2,
|
||
split,
|
||
apply div_pos_of_pos_of_pos,
|
||
exact sub_pos_of_lt _ _ Hab,
|
||
exact two_pos,
|
||
split,
|
||
apply add_midpoint Hab,
|
||
have Habs : abs (a - (a + (b - a) / 2)) < δ, begin
|
||
krewrite [sub_add_eq_sub_sub, sub_self, zero_sub, abs_neg,
|
||
abs_of_pos (div_pos_of_pos_of_pos (sub_pos_of_lt _ _ Hab) two_pos)],
|
||
apply lt_of_lt_of_le,
|
||
apply div_two_lt_of_pos (sub_pos_of_lt _ _ Hab),
|
||
apply sub_left_le_of_le_add,
|
||
apply le_of_not_gt Haδ
|
||
end,
|
||
let Hlt := and.right Hδ _ Habs,
|
||
let Hlt' := sub_lt_of_abs_sub_lt_left Hlt,
|
||
let Hlt'' := lt_add_of_sub_lt_right _ _ _ Hlt',
|
||
rewrite [-sub_eq_add_neg at Hlt'', sub_self at Hlt''],
|
||
assumption
|
||
end
|
||
|
||
theorem intermediate_value_incr : ∃ c, a < c ∧ c < b ∧ f c = 0 :=
|
||
begin
|
||
existsi inter_sup a b f,
|
||
split,
|
||
cases intermediate_value_incr_aux2 with δ Hδ,
|
||
apply lt_of_lt_of_le,
|
||
apply lt_add_of_pos_right,
|
||
exact and.left Hδ,
|
||
apply le_sup,
|
||
exact and.right Hδ,
|
||
intro x Hx,
|
||
apply le_of_lt,
|
||
exact and.left Hx,
|
||
split,
|
||
cases intermediate_value_incr_aux1 with δ Hδ,
|
||
apply lt_of_le_of_lt,
|
||
rotate 1,
|
||
apply sub_lt_of_pos,
|
||
exact and.left Hδ,
|
||
exact sup_fn_interval,
|
||
apply sup_le,
|
||
exact exists.intro a (and.intro Hab Ha),
|
||
intro x Hx,
|
||
apply le_of_not_gt,
|
||
intro Hxgt,
|
||
have Hxgt' : b - x < δ, from sub_lt_of_sub_lt _ _ _ Hxgt,
|
||
rewrite -(abs_of_pos (sub_pos_of_lt _ _ (and.left Hx))) at Hxgt',
|
||
let Hxgt'' := and.right Hδ _ Hxgt',
|
||
exact not_lt_of_ge (le_of_lt Hxgt'') (and.right Hx)
|
||
end
|
||
|
||
end
|
||
|
||
private definition neg_f (f : ℝ → ℝ) := λ x, - f x
|
||
|
||
private theorem neg_continuous_of_continuous {f : ℝ → ℝ} (Hcon : continuous f) : continuous (neg_f f) :=
|
||
begin
|
||
intros x ε Hε,
|
||
cases Hcon x Hε with δ Hδ,
|
||
cases Hδ with Hδ₁ Hδ₂,
|
||
existsi δ,
|
||
split,
|
||
assumption,
|
||
intros x' Hx',
|
||
let HD := Hδ₂ x' Hx',
|
||
rewrite [-abs_neg, ↑neg_f, neg_neg_sub_neg],
|
||
assumption
|
||
end
|
||
|
||
theorem intermediate_value_decr {f : ℝ → ℝ} (Hf : continuous f) {a b : ℝ} (Hab : a < b)
|
||
(Ha : f a > 0) (Hb : f b < 0) : ∃ c, a < c ∧ c < b ∧ f c = 0 :=
|
||
begin
|
||
have Ha' : (neg_f f) a < 0, from neg_neg_of_pos Ha,
|
||
have Hb' : (neg_f f) b > 0, from neg_pos_of_neg Hb,
|
||
have Hcon : continuous (neg_f f), from neg_continuous_of_continuous Hf,
|
||
let Hiv := intermediate_value_incr Hcon Hab Ha' Hb',
|
||
cases Hiv with c Hc,
|
||
existsi c,
|
||
split,
|
||
exact and.left Hc,
|
||
split,
|
||
exact and.left (and.right Hc),
|
||
apply eq_zero_of_neg_eq_zero,
|
||
apply and.right (and.right Hc)
|
||
end
|
||
|
||
end inter_val
|
||
|
||
/-
|
||
proposition converges_to_at_unique {f : M → N} {y₁ y₂ : N} {x : M}
|
||
(H₁ : f ⟶ y₁ '[at x]) (H₂ : f ⟶ y₂ '[at x]) : y₁ = y₂ :=
|
||
eq_of_forall_dist_le
|
||
(take ε, suppose ε > 0,
|
||
have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos,
|
||
obtain δ₁ [(δ₁pos : δ₁ > 0) (Hδ₁ : ∀ x', x ≠ x' ∧ dist x x' < δ₁ → dist (f x') y₁ < ε / 2)],
|
||
from H₁ e2pos,
|
||
obtain δ₂ [(δ₂pos : δ₂ > 0) (Hδ₂ : ∀ x', x ≠ x' ∧ dist x x' < δ₂ → dist (f x') y₂ < ε / 2)],
|
||
from H₂ e2pos,
|
||
let δ := min δ₁ δ₂ in
|
||
have δ > 0, from lt_min δ₁pos δ₂pos,
|
||
|
||
-/
|
||
|
||
end real
|