5ad4443237
also move some definitions from pointed or equiv to pointed2 and define transitivity so that it computes
308 lines
12 KiB
Text
308 lines
12 KiB
Text
/-
|
||
Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Author: Floris van Doorn
|
||
|
||
Ported from Coq HoTT
|
||
Theorems about the types equiv and is_equiv
|
||
-/
|
||
|
||
import .fiber .arrow arity ..prop_trunc cubical.square .pointed
|
||
|
||
open eq is_trunc sigma sigma.ops pi fiber function equiv
|
||
|
||
namespace is_equiv
|
||
variables {A B : Type} (f : A → B) [H : is_equiv f]
|
||
include H
|
||
/- is_equiv f is a mere proposition -/
|
||
definition is_contr_fiber_of_is_equiv [instance] (b : B) : is_contr (fiber f b) :=
|
||
is_contr.mk
|
||
(fiber.mk (f⁻¹ b) (right_inv f b))
|
||
(λz, fiber.rec_on z (λa p,
|
||
fiber_eq ((ap f⁻¹ p)⁻¹ ⬝ left_inv f a) (calc
|
||
right_inv f b = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ ((ap (f ∘ f⁻¹) p) ⬝ right_inv f b)
|
||
: by rewrite inv_con_cancel_left
|
||
... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ (right_inv f (f a) ⬝ p) : by rewrite ap_con_eq_con
|
||
... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ (ap f (left_inv f a) ⬝ p) : by rewrite [adj f]
|
||
... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ ap f (left_inv f a) ⬝ p : by rewrite con.assoc
|
||
... = (ap f (ap f⁻¹ p))⁻¹ ⬝ ap f (left_inv f a) ⬝ p : by rewrite ap_compose
|
||
... = ap f (ap f⁻¹ p)⁻¹ ⬝ ap f (left_inv f a) ⬝ p : by rewrite ap_inv
|
||
... = ap f ((ap f⁻¹ p)⁻¹ ⬝ left_inv f a) ⬝ p : by rewrite ap_con)))
|
||
|
||
definition is_contr_right_inverse : is_contr (Σ(g : B → A), f ∘ g ~ id) :=
|
||
begin
|
||
fapply is_trunc_equiv_closed,
|
||
{apply sigma_equiv_sigma_right, intro g, apply eq_equiv_homotopy},
|
||
fapply is_trunc_equiv_closed,
|
||
{apply fiber.sigma_char},
|
||
fapply is_contr_fiber_of_is_equiv,
|
||
apply (to_is_equiv (arrow_equiv_arrow_right B (equiv.mk f H))),
|
||
end
|
||
|
||
definition is_contr_right_coherence (u : Σ(g : B → A), f ∘ g ~ id)
|
||
: is_contr (Σ(η : u.1 ∘ f ~ id), Π(a : A), u.2 (f a) = ap f (η a)) :=
|
||
begin
|
||
fapply is_trunc_equiv_closed,
|
||
{apply equiv.symm, apply sigma_pi_equiv_pi_sigma},
|
||
fapply is_trunc_equiv_closed,
|
||
{apply pi_equiv_pi_right, intro a,
|
||
apply (fiber_eq_equiv (fiber.mk (u.1 (f a)) (u.2 (f a))) (fiber.mk a idp))},
|
||
end
|
||
|
||
omit H
|
||
|
||
protected definition sigma_char : (is_equiv f) ≃
|
||
(Σ(g : B → A) (ε : f ∘ g ~ id) (η : g ∘ f ~ id), Π(a : A), ε (f a) = ap f (η a)) :=
|
||
equiv.MK (λH, ⟨inv f, right_inv f, left_inv f, adj f⟩)
|
||
(λp, is_equiv.mk f p.1 p.2.1 p.2.2.1 p.2.2.2)
|
||
(λp, begin
|
||
induction p with p1 p2,
|
||
induction p2 with p21 p22,
|
||
induction p22 with p221 p222,
|
||
reflexivity
|
||
end)
|
||
(λH, by induction H; reflexivity)
|
||
|
||
protected definition sigma_char' : (is_equiv f) ≃
|
||
(Σ(u : Σ(g : B → A), f ∘ g ~ id) (η : u.1 ∘ f ~ id), Π(a : A), u.2 (f a) = ap f (η a)) :=
|
||
calc
|
||
(is_equiv f) ≃
|
||
(Σ(g : B → A) (ε : f ∘ g ~ id) (η : g ∘ f ~ id), Π(a : A), ε (f a) = ap f (η a))
|
||
: is_equiv.sigma_char
|
||
... ≃ (Σ(u : Σ(g : B → A), f ∘ g ~ id), Σ(η : u.1 ∘ f ~ id), Π(a : A), u.2 (f a) = ap f (η a))
|
||
: sigma_assoc_equiv (λu, Σ(η : u.1 ∘ f ~ id), Π(a : A), u.2 (f a) = ap f (η a))
|
||
|
||
local attribute is_contr_right_inverse [instance] [priority 1600]
|
||
local attribute is_contr_right_coherence [instance] [priority 1600]
|
||
|
||
theorem is_prop_is_equiv [instance] : is_prop (is_equiv f) :=
|
||
is_prop_of_imp_is_contr
|
||
(λ(H : is_equiv f), is_trunc_equiv_closed -2 (equiv.symm !is_equiv.sigma_char'))
|
||
|
||
definition inv_eq_inv {A B : Type} {f f' : A → B} {Hf : is_equiv f} {Hf' : is_equiv f'}
|
||
(p : f = f') : f⁻¹ = f'⁻¹ :=
|
||
apd011 inv p !is_prop.elimo
|
||
|
||
/- contractible fibers -/
|
||
definition is_contr_fun_of_is_equiv [H : is_equiv f] : is_contr_fun f :=
|
||
is_contr_fiber_of_is_equiv f
|
||
|
||
definition is_prop_is_contr_fun (f : A → B) : is_prop (is_contr_fun f) := _
|
||
|
||
definition is_equiv_of_is_contr_fun [H : is_contr_fun f] : is_equiv f :=
|
||
adjointify _ (λb, point (center (fiber f b)))
|
||
(λb, point_eq (center (fiber f b)))
|
||
(λa, ap point (center_eq (fiber.mk a idp)))
|
||
|
||
definition is_equiv_of_imp_is_equiv (H : B → is_equiv f) : is_equiv f :=
|
||
@is_equiv_of_is_contr_fun _ _ f (λb, @is_contr_fiber_of_is_equiv _ _ _ (H b) _)
|
||
|
||
definition is_equiv_equiv_is_contr_fun : is_equiv f ≃ is_contr_fun f :=
|
||
equiv_of_is_prop _ (λH, !is_equiv_of_is_contr_fun)
|
||
|
||
theorem inv_commute'_fn {A : Type} {B C : A → Type} (f : Π{a}, B a → C a) [H : Πa, is_equiv (@f a)]
|
||
{g : A → A} (h : Π{a}, B a → B (g a)) (h' : Π{a}, C a → C (g a))
|
||
(p : Π⦃a : A⦄ (b : B a), f (h b) = h' (f b)) {a : A} (b : B a) :
|
||
inv_commute' @f @h @h' p (f b)
|
||
= (ap f⁻¹ (p b))⁻¹ ⬝ left_inv f (h b) ⬝ (ap h (left_inv f b))⁻¹ :=
|
||
begin
|
||
rewrite [↑[inv_commute',eq_of_fn_eq_fn'],+ap_con,-adj_inv f,+con.assoc,inv_con_cancel_left,
|
||
adj f,+ap_inv,-+ap_compose,
|
||
eq_bot_of_square (natural_square_tr (λb, (left_inv f (h b))⁻¹ ⬝ ap f⁻¹ (p b)) (left_inv f b))⁻¹ʰ,
|
||
con_inv,inv_inv,+con.assoc],
|
||
do 3 apply whisker_left,
|
||
rewrite [con_inv_cancel_left,con.left_inv]
|
||
end
|
||
|
||
end is_equiv
|
||
|
||
/- Moving equivalences around in homotopies -/
|
||
namespace is_equiv
|
||
variables {A B C : Type} (f : A → B) [Hf : is_equiv f]
|
||
|
||
include Hf
|
||
|
||
section pre_compose
|
||
variables (α : A → C) (β : B → C)
|
||
|
||
-- homotopy_inv_of_homotopy_pre is in init.equiv
|
||
protected definition inv_homotopy_of_homotopy_pre.is_equiv
|
||
: is_equiv (inv_homotopy_of_homotopy_pre f α β) :=
|
||
adjointify _ (homotopy_of_inv_homotopy_pre f α β)
|
||
abstract begin
|
||
intro q, apply eq_of_homotopy, intro b,
|
||
unfold inv_homotopy_of_homotopy_pre,
|
||
unfold homotopy_of_inv_homotopy_pre,
|
||
apply inverse, apply eq_bot_of_square,
|
||
apply eq_hconcat (ap02 α (adj_inv f b)),
|
||
apply eq_hconcat (ap_compose α f⁻¹ (right_inv f b))⁻¹,
|
||
apply natural_square q (right_inv f b)
|
||
end end
|
||
abstract begin
|
||
intro p, apply eq_of_homotopy, intro a,
|
||
unfold inv_homotopy_of_homotopy_pre,
|
||
unfold homotopy_of_inv_homotopy_pre,
|
||
apply trans (con.assoc
|
||
(ap α (left_inv f a))⁻¹
|
||
(p (f⁻¹ (f a)))
|
||
(ap β (right_inv f (f a))))⁻¹,
|
||
apply inverse, apply eq_bot_of_square,
|
||
refine hconcat_eq _ (ap02 β (adj f a))⁻¹,
|
||
refine hconcat_eq _ (ap_compose β f (left_inv f a)),
|
||
apply natural_square p (left_inv f a)
|
||
end end
|
||
end pre_compose
|
||
|
||
section post_compose
|
||
variables (α : C → A) (β : C → B)
|
||
|
||
-- homotopy_inv_of_homotopy_post is in init.equiv
|
||
protected definition inv_homotopy_of_homotopy_post.is_equiv
|
||
: is_equiv (inv_homotopy_of_homotopy_post f α β) :=
|
||
adjointify _ (homotopy_of_inv_homotopy_post f α β)
|
||
abstract begin
|
||
intro q, apply eq_of_homotopy, intro c,
|
||
unfold inv_homotopy_of_homotopy_post,
|
||
unfold homotopy_of_inv_homotopy_post,
|
||
apply trans (whisker_right (left_inv f (α c))
|
||
(ap_con f⁻¹ (right_inv f (β c))⁻¹ (ap f (q c))
|
||
⬝ whisker_right (ap f⁻¹ (ap f (q c)))
|
||
(ap_inv f⁻¹ (right_inv f (β c))))),
|
||
apply inverse, apply eq_bot_of_square,
|
||
apply eq_hconcat (adj_inv f (β c))⁻¹,
|
||
apply eq_vconcat (ap_compose f⁻¹ f (q c))⁻¹,
|
||
refine vconcat_eq _ (ap_id (q c)),
|
||
apply natural_square_tr (left_inv f) (q c)
|
||
end end
|
||
abstract begin
|
||
intro p, apply eq_of_homotopy, intro c,
|
||
unfold inv_homotopy_of_homotopy_post,
|
||
unfold homotopy_of_inv_homotopy_post,
|
||
apply trans (whisker_left (right_inv f (β c))⁻¹
|
||
(ap_con f (ap f⁻¹ (p c)) (left_inv f (α c)))),
|
||
apply trans (con.assoc (right_inv f (β c))⁻¹ (ap f (ap f⁻¹ (p c)))
|
||
(ap f (left_inv f (α c))))⁻¹,
|
||
apply inverse, apply eq_bot_of_square,
|
||
refine hconcat_eq _ (adj f (α c)),
|
||
apply eq_vconcat (ap_compose f f⁻¹ (p c))⁻¹,
|
||
refine vconcat_eq _ (ap_id (p c)),
|
||
apply natural_square_tr (right_inv f) (p c)
|
||
end end
|
||
|
||
end post_compose
|
||
|
||
end is_equiv
|
||
|
||
namespace is_equiv
|
||
|
||
/- Theorem 4.7.7 -/
|
||
variables {A : Type} {P Q : A → Type}
|
||
variable (f : Πa, P a → Q a)
|
||
|
||
definition is_fiberwise_equiv [reducible] := Πa, is_equiv (f a)
|
||
|
||
definition is_equiv_total_of_is_fiberwise_equiv [H : is_fiberwise_equiv f] : is_equiv (total f) :=
|
||
is_equiv_sigma_functor id f
|
||
|
||
definition is_fiberwise_equiv_of_is_equiv_total [H : is_equiv (total f)]
|
||
: is_fiberwise_equiv f :=
|
||
begin
|
||
intro a,
|
||
apply is_equiv_of_is_contr_fun, intro q,
|
||
apply @is_contr_equiv_closed _ _ (fiber_total_equiv f q)
|
||
end
|
||
|
||
end is_equiv
|
||
|
||
namespace equiv
|
||
open is_equiv
|
||
variables {A B C : Type}
|
||
|
||
definition equiv_mk_eq {f f' : A → B} [H : is_equiv f] [H' : is_equiv f'] (p : f = f')
|
||
: equiv.mk f H = equiv.mk f' H' :=
|
||
apd011 equiv.mk p !is_prop.elimo
|
||
|
||
definition equiv_eq' {f f' : A ≃ B} (p : to_fun f = to_fun f') : f = f' :=
|
||
by (cases f; cases f'; apply (equiv_mk_eq p))
|
||
|
||
definition equiv_eq {f f' : A ≃ B} (p : to_fun f ~ to_fun f') : f = f' :=
|
||
by apply equiv_eq'; apply eq_of_homotopy p
|
||
|
||
definition trans_symm (f : A ≃ B) (g : B ≃ C) : (f ⬝e g)⁻¹ᵉ = g⁻¹ᵉ ⬝e f⁻¹ᵉ :> (C ≃ A) :=
|
||
equiv_eq' idp
|
||
|
||
definition symm_symm (f : A ≃ B) : f⁻¹ᵉ⁻¹ᵉ = f :> (A ≃ B) :=
|
||
equiv_eq' idp
|
||
|
||
protected definition equiv.sigma_char [constructor]
|
||
(A B : Type) : (A ≃ B) ≃ Σ(f : A → B), is_equiv f :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{intro F, exact ⟨to_fun F, to_is_equiv F⟩},
|
||
{intro p, cases p with f H, exact (equiv.mk f H)},
|
||
{intro p, cases p, exact idp},
|
||
{intro F, cases F, exact idp},
|
||
end
|
||
|
||
definition equiv_eq_char (f f' : A ≃ B) : (f = f') ≃ (to_fun f = to_fun f') :=
|
||
calc
|
||
(f = f') ≃ (to_fun !equiv.sigma_char f = to_fun !equiv.sigma_char f')
|
||
: eq_equiv_fn_eq (to_fun !equiv.sigma_char)
|
||
... ≃ ((to_fun !equiv.sigma_char f).1 = (to_fun !equiv.sigma_char f').1 ) : equiv_subtype
|
||
... ≃ (to_fun f = to_fun f') : equiv.rfl
|
||
|
||
definition is_equiv_ap_to_fun (f f' : A ≃ B)
|
||
: is_equiv (ap to_fun : f = f' → to_fun f = to_fun f') :=
|
||
begin
|
||
fapply adjointify,
|
||
{intro p, cases f with f H, cases f' with f' H', cases p, apply ap (mk f'), apply is_prop.elim},
|
||
{intro p, cases f with f H, cases f' with f' H', cases p,
|
||
apply @concat _ _ (ap to_fun (ap (equiv.mk f') (is_prop.elim H H'))), {apply idp},
|
||
generalize is_prop.elim H H', intro q, cases q, apply idp},
|
||
{intro p, cases p, cases f with f H, apply ap (ap (equiv.mk f)), apply is_set.elim}
|
||
end
|
||
|
||
definition equiv_pathover {A : Type} {a a' : A} (p : a = a')
|
||
{B : A → Type} {C : A → Type} (f : B a ≃ C a) (g : B a' ≃ C a')
|
||
(r : Π(b : B a) (b' : B a') (q : b =[p] b'), f b =[p] g b') : f =[p] g :=
|
||
begin
|
||
fapply pathover_of_fn_pathover_fn,
|
||
{ intro a, apply equiv.sigma_char},
|
||
{ fapply sigma_pathover,
|
||
esimp, apply arrow_pathover, exact r,
|
||
apply is_prop.elimo}
|
||
end
|
||
|
||
definition is_contr_equiv (A B : Type) [HA : is_contr A] [HB : is_contr B] : is_contr (A ≃ B) :=
|
||
begin
|
||
apply @is_contr_of_inhabited_prop, apply is_prop.mk,
|
||
intro x y, cases x with fx Hx, cases y with fy Hy, generalize Hy,
|
||
apply (eq_of_homotopy (λ a, !eq_of_is_contr)) ▸ (λ Hy, !is_prop.elim ▸ rfl),
|
||
apply equiv_of_is_contr_of_is_contr
|
||
end
|
||
|
||
definition is_trunc_succ_equiv (n : trunc_index) (A B : Type)
|
||
[HA : is_trunc n.+1 A] [HB : is_trunc n.+1 B] : is_trunc n.+1 (A ≃ B) :=
|
||
@is_trunc_equiv_closed _ _ n.+1 (equiv.symm !equiv.sigma_char)
|
||
(@is_trunc_sigma _ _ _ _ (λ f, !is_trunc_succ_of_is_prop))
|
||
|
||
definition is_trunc_equiv (n : trunc_index) (A B : Type)
|
||
[HA : is_trunc n A] [HB : is_trunc n B] : is_trunc n (A ≃ B) :=
|
||
by cases n; apply !is_contr_equiv; apply !is_trunc_succ_equiv
|
||
|
||
definition eq_of_fn_eq_fn'_idp {A B : Type} (f : A → B) [is_equiv f] (x : A)
|
||
: eq_of_fn_eq_fn' f (idpath (f x)) = idpath x :=
|
||
!con.left_inv
|
||
|
||
definition eq_of_fn_eq_fn'_con {A B : Type} (f : A → B) [is_equiv f] {x y z : A}
|
||
(p : f x = f y) (q : f y = f z)
|
||
: eq_of_fn_eq_fn' f (p ⬝ q) = eq_of_fn_eq_fn' f p ⬝ eq_of_fn_eq_fn' f q :=
|
||
begin
|
||
unfold eq_of_fn_eq_fn',
|
||
refine _ ⬝ !con.assoc, apply whisker_right,
|
||
refine _ ⬝ !con.assoc⁻¹ ⬝ !con.assoc⁻¹, apply whisker_left,
|
||
refine !ap_con ⬝ _, apply whisker_left,
|
||
refine !con_inv_cancel_left⁻¹
|
||
end
|
||
|
||
end equiv
|