9265094f96
Now the underlying pointed function and pointed inverse are the functions which were put in definitionally
350 lines
14 KiB
Text
350 lines
14 KiB
Text
/-
|
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
Authors: Floris van Doorn, Mike Shulman
|
|
|
|
Ported from Coq HoTT
|
|
Theorems about fibers
|
|
-/
|
|
|
|
import .sigma .eq .pi cubical.squareover .pointed .eq
|
|
open equiv sigma sigma.ops eq pi pointed
|
|
|
|
structure fiber {A B : Type} (f : A → B) (b : B) :=
|
|
(point : A)
|
|
(point_eq : f point = b)
|
|
|
|
namespace fiber
|
|
variables {A B : Type} {f : A → B} {b : B}
|
|
|
|
protected definition sigma_char [constructor]
|
|
(f : A → B) (b : B) : fiber f b ≃ (Σ(a : A), f a = b) :=
|
|
begin
|
|
fapply equiv.MK,
|
|
{intro x, exact ⟨point x, point_eq x⟩},
|
|
{intro x, exact (fiber.mk x.1 x.2)},
|
|
{intro x, cases x, apply idp },
|
|
{intro x, cases x, apply idp },
|
|
end
|
|
|
|
definition fiber_eq_equiv [constructor] (x y : fiber f b)
|
|
: (x = y) ≃ (Σ(p : point x = point y), point_eq x = ap f p ⬝ point_eq y) :=
|
|
begin
|
|
apply equiv.trans,
|
|
apply eq_equiv_fn_eq_of_equiv, apply fiber.sigma_char,
|
|
apply equiv.trans,
|
|
apply sigma_eq_equiv,
|
|
apply sigma_equiv_sigma_right,
|
|
intro p,
|
|
apply eq_pathover_equiv_Fl,
|
|
end
|
|
|
|
definition fiber_eq {x y : fiber f b} (p : point x = point y)
|
|
(q : point_eq x = ap f p ⬝ point_eq y) : x = y :=
|
|
to_inv !fiber_eq_equiv ⟨p, q⟩
|
|
|
|
definition fiber_pathover {X : Type} {A B : X → Type} {x₁ x₂ : X} {p : x₁ = x₂}
|
|
{f : Πx, A x → B x} {b : Πx, B x} {v₁ : fiber (f x₁) (b x₁)} {v₂ : fiber (f x₂) (b x₂)}
|
|
(q : point v₁ =[p] point v₂)
|
|
(r : squareover B hrfl (pathover_idp_of_eq (point_eq v₁)) (pathover_idp_of_eq (point_eq v₂))
|
|
(apo f q) (apd b p))
|
|
: v₁ =[p] v₂ :=
|
|
begin
|
|
apply pathover_of_fn_pathover_fn (λa, !fiber.sigma_char), esimp,
|
|
fapply sigma_pathover: esimp,
|
|
{ exact q},
|
|
{ induction v₁ with a₁ p₁, induction v₂ with a₂ p₂, esimp at *, induction q, esimp at *,
|
|
apply pathover_idp_of_eq, apply eq_of_vdeg_square, apply square_of_squareover_ids r}
|
|
end
|
|
|
|
open is_trunc
|
|
definition fiber_pr1 (B : A → Type) (a : A) : fiber (pr1 : (Σa, B a) → A) a ≃ B a :=
|
|
calc
|
|
fiber pr1 a ≃ Σu, u.1 = a : fiber.sigma_char
|
|
... ≃ Σa' (b : B a'), a' = a : sigma_assoc_equiv
|
|
... ≃ Σa' (p : a' = a), B a' : sigma_equiv_sigma_right (λa', !comm_equiv_nondep)
|
|
... ≃ Σu, B u.1 : sigma_assoc_equiv
|
|
... ≃ B a : !sigma_equiv_of_is_contr_left
|
|
|
|
definition sigma_fiber_equiv (f : A → B) : (Σb, fiber f b) ≃ A :=
|
|
calc
|
|
(Σb, fiber f b) ≃ Σb a, f a = b : sigma_equiv_sigma_right (λb, !fiber.sigma_char)
|
|
... ≃ Σa b, f a = b : sigma_comm_equiv
|
|
... ≃ A : sigma_equiv_of_is_contr_right
|
|
|
|
definition is_pointed_fiber [instance] [constructor] (f : A → B) (a : A)
|
|
: pointed (fiber f (f a)) :=
|
|
pointed.mk (fiber.mk a idp)
|
|
|
|
definition pointed_fiber [constructor] (f : A → B) (a : A) : Type* :=
|
|
pointed.Mk (fiber.mk a (idpath (f a)))
|
|
|
|
definition is_trunc_fun [reducible] (n : ℕ₋₂) (f : A → B) :=
|
|
Π(b : B), is_trunc n (fiber f b)
|
|
|
|
definition is_contr_fun [reducible] (f : A → B) := is_trunc_fun -2 f
|
|
|
|
-- pre and post composition with equivalences
|
|
open function
|
|
variable (f)
|
|
protected definition equiv_postcompose [constructor] {B' : Type} (g : B ≃ B') --[H : is_equiv g]
|
|
(b : B) : fiber (g ∘ f) (g b) ≃ fiber f b :=
|
|
calc
|
|
fiber (g ∘ f) (g b) ≃ Σa : A, g (f a) = g b : fiber.sigma_char
|
|
... ≃ Σa : A, f a = b : begin
|
|
apply sigma_equiv_sigma_right, intro a,
|
|
apply equiv.symm, apply eq_equiv_fn_eq
|
|
end
|
|
... ≃ fiber f b : fiber.sigma_char
|
|
|
|
protected definition equiv_precompose [constructor] {A' : Type} (g : A' ≃ A) --[H : is_equiv g]
|
|
(b : B) : fiber (f ∘ g) b ≃ fiber f b :=
|
|
calc
|
|
fiber (f ∘ g) b ≃ Σa' : A', f (g a') = b : fiber.sigma_char
|
|
... ≃ Σa : A, f a = b : begin
|
|
apply sigma_equiv_sigma g,
|
|
intro a', apply erfl
|
|
end
|
|
... ≃ fiber f b : fiber.sigma_char
|
|
|
|
end fiber
|
|
|
|
open unit is_trunc pointed
|
|
|
|
namespace fiber
|
|
|
|
definition fiber_star_equiv [constructor] (A : Type) : fiber (λx : A, star) star ≃ A :=
|
|
begin
|
|
fapply equiv.MK,
|
|
{ intro f, cases f with a H, exact a },
|
|
{ intro a, apply fiber.mk a, reflexivity },
|
|
{ intro a, reflexivity },
|
|
{ intro f, cases f with a H, change fiber.mk a (refl star) = fiber.mk a H,
|
|
rewrite [is_set.elim H (refl star)] }
|
|
end
|
|
|
|
definition fiber_const_equiv [constructor] (A : Type) (a₀ : A) (a : A)
|
|
: fiber (λz : unit, a₀) a ≃ a₀ = a :=
|
|
calc
|
|
fiber (λz : unit, a₀) a
|
|
≃ Σz : unit, a₀ = a : fiber.sigma_char
|
|
... ≃ a₀ = a : sigma_unit_left
|
|
|
|
-- the pointed fiber of a pointed map, which is the fiber over the basepoint
|
|
open pointed
|
|
definition pfiber [constructor] {X Y : Type*} (f : X →* Y) : Type* :=
|
|
pointed.MK (fiber f pt) (fiber.mk pt !respect_pt)
|
|
|
|
definition ppoint [constructor] {X Y : Type*} (f : X →* Y) : pfiber f →* X :=
|
|
pmap.mk point idp
|
|
|
|
definition pfiber.sigma_char [constructor] {A B : Type*} (f : A →* B)
|
|
: pfiber f ≃* pointed.MK (Σa, f a = pt) ⟨pt, respect_pt f⟩ :=
|
|
pequiv_of_equiv (fiber.sigma_char f pt) idp
|
|
|
|
definition ppoint_sigma_char [constructor] {A B : Type*} (f : A →* B)
|
|
: ppoint f ~* pmap.mk pr1 idp ∘* pfiber.sigma_char f :=
|
|
!phomotopy.refl
|
|
|
|
definition pfiber_pequiv_of_phomotopy {A B : Type*} {f g : A →* B} (h : f ~* g)
|
|
: pfiber f ≃* pfiber g :=
|
|
begin
|
|
fapply pequiv_of_equiv,
|
|
{ refine (fiber.sigma_char f pt ⬝e _ ⬝e (fiber.sigma_char g pt)⁻¹ᵉ),
|
|
apply sigma_equiv_sigma_right, intros a,
|
|
apply equiv_eq_closed_left, apply (to_homotopy h) },
|
|
{ refine (fiber_eq rfl _),
|
|
change (h pt)⁻¹ ⬝ respect_pt f = idp ⬝ respect_pt g,
|
|
rewrite idp_con, apply inv_con_eq_of_eq_con, symmetry, exact (to_homotopy_pt h) }
|
|
end
|
|
|
|
definition transport_fiber_equiv [constructor] {A B : Type} (f : A → B) {b1 b2 : B} (p : b1 = b2)
|
|
: fiber f b1 ≃ fiber f b2 :=
|
|
calc fiber f b1 ≃ Σa, f a = b1 : fiber.sigma_char
|
|
... ≃ Σa, f a = b2 : sigma_equiv_sigma_right (λa, equiv_eq_closed_right (f a) p)
|
|
... ≃ fiber f b2 : fiber.sigma_char
|
|
|
|
definition pequiv_postcompose {A B B' : Type*} (f : A →* B) (g : B ≃* B')
|
|
: pfiber (g ∘* f) ≃* pfiber f :=
|
|
begin
|
|
fapply pequiv_of_equiv, esimp,
|
|
refine transport_fiber_equiv (g ∘* f) (respect_pt g)⁻¹ ⬝e fiber.equiv_postcompose f g (Point B),
|
|
esimp, apply (ap (fiber.mk (Point A))), refine !con.assoc ⬝ _, apply inv_con_eq_of_eq_con,
|
|
rewrite [con.assoc, con.right_inv, con_idp, -ap_compose'], apply ap_con_eq_con
|
|
end
|
|
|
|
definition pequiv_precompose {A A' B : Type*} (f : A →* B) (g : A' ≃* A)
|
|
: pfiber (f ∘* g) ≃* pfiber f :=
|
|
begin
|
|
fapply pequiv_of_equiv, esimp,
|
|
refine fiber.equiv_precompose f g (Point B),
|
|
esimp, apply (eq_of_fn_eq_fn (fiber.sigma_char _ _)), fapply sigma_eq: esimp,
|
|
{ apply respect_pt g },
|
|
{ apply eq_pathover_Fl' }
|
|
end
|
|
|
|
definition pfiber_pequiv_of_square {A B C D : Type*} {f : A →* B} {g : C →* D} (h : A ≃* C)
|
|
(k : B ≃* D) (s : k ∘* f ~* g ∘* h) : pfiber f ≃* pfiber g :=
|
|
calc pfiber f ≃* pfiber (k ∘* f) : pequiv_postcompose
|
|
... ≃* pfiber (g ∘* h) : pfiber_pequiv_of_phomotopy s
|
|
... ≃* pfiber g : pequiv_precompose
|
|
|
|
definition pcompose_ppoint {A B : Type*} (f : A →* B) : f ∘* ppoint f ~* pconst (pfiber f) B :=
|
|
begin
|
|
fapply phomotopy.mk,
|
|
{ exact point_eq },
|
|
{ exact !idp_con⁻¹ }
|
|
end
|
|
|
|
definition point_fiber_eq {A B : Type} {f : A → B} {b : B} {x y : fiber f b}
|
|
(p : point x = point y) (q : point_eq x = ap f p ⬝ point_eq y) :
|
|
ap point (fiber_eq p q) = p :=
|
|
begin
|
|
induction x with a r, induction y with a' s, esimp at *, induction p,
|
|
induction q using eq.rec_symm, induction s, reflexivity
|
|
end
|
|
|
|
definition fiber_eq_equiv_fiber {A B : Type} {f : A → B} {b : B} (x y : fiber f b) :
|
|
x = y ≃ fiber (ap1_gen f (point_eq x) (point_eq y)) (idpath b) :=
|
|
calc
|
|
x = y ≃ fiber.sigma_char f b x = fiber.sigma_char f b y :
|
|
eq_equiv_fn_eq_of_equiv (fiber.sigma_char f b) x y
|
|
... ≃ Σ(p : point x = point y), point_eq x =[p] point_eq y : sigma_eq_equiv
|
|
... ≃ Σ(p : point x = point y), (point_eq x)⁻¹ ⬝ ap f p ⬝ point_eq y = idp :
|
|
sigma_equiv_sigma_right (λp,
|
|
calc point_eq x =[p] point_eq y ≃ point_eq x = ap f p ⬝ point_eq y : eq_pathover_equiv_Fl
|
|
... ≃ ap f p ⬝ point_eq y = point_eq x : eq_equiv_eq_symm
|
|
... ≃ (point_eq x)⁻¹ ⬝ (ap f p ⬝ point_eq y) = idp : eq_equiv_inv_con_eq_idp
|
|
... ≃ (point_eq x)⁻¹ ⬝ ap f p ⬝ point_eq y = idp : equiv_eq_closed_left _ !con.assoc⁻¹)
|
|
... ≃ fiber (ap1_gen f (point_eq x) (point_eq y)) (idpath b) : fiber.sigma_char
|
|
|
|
definition loop_pfiber [constructor] {A B : Type*} (f : A →* B) : Ω (pfiber f) ≃* pfiber (Ω→ f) :=
|
|
pequiv_of_equiv (fiber_eq_equiv_fiber pt pt)
|
|
begin
|
|
induction f with f f₀, induction B with B b₀, esimp at (f,f₀), induction f₀, reflexivity
|
|
end
|
|
|
|
definition pfiber_loop_space {A B : Type*} (f : A →* B) : pfiber (Ω→ f) ≃* Ω (pfiber f) :=
|
|
(loop_pfiber f)⁻¹ᵉ*
|
|
|
|
definition point_fiber_eq_equiv_fiber {A B : Type} {f : A → B} {b : B} {x y : fiber f b}
|
|
(p : x = y) : point (fiber_eq_equiv_fiber x y p) = ap1_gen point idp idp p :=
|
|
by induction p; reflexivity
|
|
|
|
lemma ppoint_loop_pfiber {A B : Type*} (f : A →* B) :
|
|
ppoint (Ω→ f) ∘* loop_pfiber f ~* Ω→ (ppoint f) :=
|
|
phomotopy.mk (point_fiber_eq_equiv_fiber)
|
|
begin
|
|
induction f with f f₀, induction B with B b₀, esimp at (f,f₀), induction f₀, reflexivity
|
|
end
|
|
|
|
lemma ppoint_loop_pfiber_inv {A B : Type*} (f : A →* B) :
|
|
Ω→ (ppoint f) ∘* (loop_pfiber f)⁻¹ᵉ* ~* ppoint (Ω→ f) :=
|
|
(phomotopy_pinv_right_of_phomotopy (ppoint_loop_pfiber f))⁻¹*
|
|
|
|
lemma pfiber_pequiv_of_phomotopy_ppoint {A B : Type*} {f g : A →* B} (h : f ~* g)
|
|
: ppoint g ∘* pfiber_pequiv_of_phomotopy h ~* ppoint f :=
|
|
begin
|
|
induction f with f f₀, induction g with g g₀, induction h with h h₀, induction B with B b₀,
|
|
esimp at *, induction h₀, induction g₀,
|
|
fapply phomotopy.mk,
|
|
{ reflexivity },
|
|
{ esimp [pfiber_pequiv_of_phomotopy], exact !point_fiber_eq⁻¹ }
|
|
end
|
|
|
|
lemma pequiv_postcompose_ppoint {A B B' : Type*} (f : A →* B) (g : B ≃* B')
|
|
: ppoint f ∘* fiber.pequiv_postcompose f g ~* ppoint (g ∘* f) :=
|
|
begin
|
|
induction f with f f₀, induction g with g hg g₀, induction B with B b₀,
|
|
induction B' with B' b₀', esimp at *, induction g₀, induction f₀,
|
|
fapply phomotopy.mk,
|
|
{ reflexivity },
|
|
{ esimp [pequiv_postcompose], symmetry,
|
|
refine !ap_compose⁻¹ ⬝ _, apply ap_constant }
|
|
end
|
|
|
|
lemma pequiv_precompose_ppoint {A A' B : Type*} (f : A →* B) (g : A' ≃* A)
|
|
: ppoint f ∘* fiber.pequiv_precompose f g ~* g ∘* ppoint (f ∘* g) :=
|
|
begin
|
|
induction f with f f₀, induction g with g h₁ h₂ p₁ p₂, induction B with B b₀,
|
|
induction g with g g₀, induction A with A a₀', esimp at *, induction g₀, induction f₀,
|
|
reflexivity
|
|
end
|
|
|
|
definition pfiber_pequiv_of_square_ppoint {A B C D : Type*} {f : A →* B} {g : C →* D}
|
|
(h : A ≃* C) (k : B ≃* D) (s : k ∘* f ~* g ∘* h)
|
|
: ppoint g ∘* pfiber_pequiv_of_square h k s ~* h ∘* ppoint f :=
|
|
begin
|
|
refine !passoc⁻¹* ⬝* _,
|
|
refine pwhisker_right _ !pequiv_precompose_ppoint ⬝* _,
|
|
refine !passoc ⬝* _,
|
|
apply pwhisker_left,
|
|
refine !passoc⁻¹* ⬝* _,
|
|
refine pwhisker_right _ !pfiber_pequiv_of_phomotopy_ppoint ⬝* _,
|
|
apply pinv_right_phomotopy_of_phomotopy,
|
|
refine !pequiv_postcompose_ppoint⁻¹*,
|
|
end
|
|
|
|
-- this breaks certain proofs if it is an instance
|
|
definition is_trunc_fiber (n : ℕ₋₂) {A B : Type} (f : A → B) (b : B)
|
|
[is_trunc n A] [is_trunc (n.+1) B] : is_trunc n (fiber f b) :=
|
|
is_trunc_equiv_closed_rev n !fiber.sigma_char
|
|
|
|
definition is_trunc_pfiber (n : ℕ₋₂) {A B : Type*} (f : A →* B)
|
|
[is_trunc n A] [is_trunc (n.+1) B] : is_trunc n (pfiber f) :=
|
|
is_trunc_fiber n f pt
|
|
|
|
definition fiber_equiv_of_is_contr [constructor] {A B : Type} (f : A → B) (b : B) [is_contr B] :
|
|
fiber f b ≃ A :=
|
|
!fiber.sigma_char ⬝e !sigma_equiv_of_is_contr_right
|
|
|
|
definition pfiber_pequiv_of_is_contr [constructor] {A B : Type*} (f : A →* B) [is_contr B] :
|
|
pfiber f ≃* A :=
|
|
pequiv_of_equiv (fiber_equiv_of_is_contr f pt) idp
|
|
|
|
end fiber
|
|
|
|
open function is_equiv
|
|
|
|
namespace fiber
|
|
/- Theorem 4.7.6 -/
|
|
variables {A : Type} {P Q : A → Type}
|
|
variable (f : Πa, P a → Q a)
|
|
|
|
definition fiber_total_equiv [constructor] {a : A} (q : Q a)
|
|
: fiber (total f) ⟨a , q⟩ ≃ fiber (f a) q :=
|
|
calc
|
|
fiber (total f) ⟨a , q⟩
|
|
≃ Σ(w : Σx, P x), ⟨w.1 , f w.1 w.2 ⟩ = ⟨a , q⟩
|
|
: fiber.sigma_char
|
|
... ≃ Σ(x : A), Σ(p : P x), ⟨x , f x p⟩ = ⟨a , q⟩
|
|
: sigma_assoc_equiv
|
|
... ≃ Σ(x : A), Σ(p : P x), Σ(H : x = a), f x p =[H] q
|
|
:
|
|
begin
|
|
apply sigma_equiv_sigma_right, intro x,
|
|
apply sigma_equiv_sigma_right, intro p,
|
|
apply sigma_eq_equiv
|
|
end
|
|
... ≃ Σ(x : A), Σ(H : x = a), Σ(p : P x), f x p =[H] q
|
|
:
|
|
begin
|
|
apply sigma_equiv_sigma_right, intro x,
|
|
apply sigma_comm_equiv
|
|
end
|
|
... ≃ Σ(w : Σx, x = a), Σ(p : P w.1), f w.1 p =[w.2] q
|
|
: sigma_assoc_equiv
|
|
... ≃ Σ(p : P (center (Σx, x=a)).1), f (center (Σx, x=a)).1 p =[(center (Σx, x=a)).2] q
|
|
: sigma_equiv_of_is_contr_left
|
|
... ≃ Σ(p : P a), f a p =[idpath a] q
|
|
: equiv_of_eq idp
|
|
... ≃ Σ(p : P a), f a p = q
|
|
:
|
|
begin
|
|
apply sigma_equiv_sigma_right, intro p,
|
|
apply pathover_idp
|
|
end
|
|
... ≃ fiber (f a) q
|
|
: fiber.sigma_char
|
|
|
|
end fiber
|