lean2/hott/homotopy/vankampen.hlean

366 lines
14 KiB
Text

/-
Copyright (c) 2016 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
-/
import hit.pushout hit.prop_trunc algebra.category.constructions.pushout
algebra.category.constructions.fundamental_groupoid algebra.category.functor.equivalence
open eq pushout category functor sum iso paths set_quotient is_trunc trunc pi quotient
is_equiv fiber equiv
namespace pushout
section
universe variables u v w
parameters {S TL : Type.{u}} -- do we want to put these in different universe levels?
{BL : Type.{v}} {TR : Type.{w}} (k : S → TL) (f : TL → BL) (g : TL → TR)
[ksurj : is_surjective k]
include ksurj
definition pushout_of_sum [unfold 6] (x : BL + TR) : pushout f g :=
quotient.class_of _ x
local notation `F` := fundamental_groupoid_functor f
local notation `G` := fundamental_groupoid_functor g
local notation `C` := Groupoid_bpushout k F G
local notation `R` := bpushout_prehom_index k F G
local notation `Q` := bpushout_hom_rel_index k F G
local attribute is_trunc_equiv [instance]
open category.bpushout_prehom_index category.bpushout_hom_rel_index paths.paths_rel
protected definition code_equiv_pt (x : BL + TR) {y : TL} {s : S} (p : k s = y) :
@hom C _ x (sum.inl (f y)) ≃ @hom C _ x (sum.inr (g y)) :=
begin
fapply equiv_postcompose,
{ apply class_of,
refine [iE k F G (tap g (tr p)), DE k F G s, iD k F G (tap f (tr p⁻¹))]},
refine all_iso _
end
protected definition code_equiv_pt_constant (x : BL + TR) {y : TL} {s s' : S}
(p : k s = y) (p' : k s' = y) : code_equiv_pt x p = code_equiv_pt x p' :=
begin
apply equiv_eq, intro g,
apply ap (λx, x ∘ _),
induction p',
refine eq_of_rel (tr _) ⬝ (eq_of_rel (tr _))⁻¹,
{ exact [DE k _ _ s']},
{ refine rtrans (rel [_] (cohDE F G (tr p))) _,
refine rtrans (rcons _ (rel [] !DD)) _,
refine tr_rev (λx, paths_rel _ [_ , iD k F G (tr x)] _)
(!ap_con⁻¹ ⬝ ap02 f !con.left_inv) _,
exact rcons _ (rel [] !idD)},
refine rtrans (rel _ !idE) _,
exact rcons _ (rel [] !idD)
end
protected definition code_equiv (x : BL + TR) (y : TL) :
@hom C _ x (sum.inl (f y)) ≃ @hom C _ x (sum.inr (g y)) :=
begin
refine @is_prop.elim_set _ _ _ _ _ (ksurj y), { apply @is_trunc_equiv: apply is_set_hom},
{ intro v, cases v with s p,
exact code_equiv_pt x p},
intro v v', cases v with s p, cases v' with s' p',
exact code_equiv_pt_constant x p p'
end
theorem code_equiv_eq (x : BL + TR) (s : S) :
code_equiv x (k s) = @(equiv_postcompose (class_of [DE k F G s])) !all_iso :=
begin
apply equiv_eq, intro h,
-- induction h using set_quotient.rec_prop with l,
refine @set_quotient.rec_prop _ _ _ _ _ h, {intro l, apply is_trunc_eq, apply is_set_hom},
intro l,
have ksurj (k s) = tr (fiber.mk s idp), from !is_prop.elim,
refine ap (λz, to_fun (@is_prop.elim_set _ _ _ _ _ z) (class_of l)) this ⬝ _,
change class_of ([iE k F G (tr idp), DE k F G s, iD k F G (tr idp)] ++ l) =
class_of (DE k F G s :: l) :> @hom C _ _ _,
refine eq_of_rel (tr _) ⬝ (eq_of_rel (tr _)),
{ exact DE k F G s :: iD k F G (tr idp) :: l},
{ change paths_rel Q ([iE k F G (tr idp)] ++ (DE k F G s :: iD k F G (tr idp) :: l))
(nil ++ (DE k F G s :: iD k F G (tr idp) :: l)),
apply rel ([DE k F G s, iD k F G (tr idp)] ++ l),
apply idE},
{ apply rcons, rewrite [-nil_append l at {2}, -singleton_append], apply rel l, apply idD}
end
theorem to_fun_code_equiv (x : BL + TR) (s : S) (h : @hom C _ x (sum.inl (f (k s)))) :
(to_fun (code_equiv x (k s)) h) = @comp C _ _ _ _ (class_of [DE k F G s]) h :=
ap010 to_fun !code_equiv_eq h
protected definition code [unfold 10] (x : BL + TR) (y : pushout f g) : Type.{max u v w} :=
begin
refine quotient.elim_type _ _ y,
{ clear y, intro y, exact @hom C _ x y},
clear y, intro y z r, induction r with y,
exact code_equiv x y
end
/-
[iE (ap g p), DE s, iD (ap f p⁻¹)]
-->
[DE s', iD (ap f p), iD (ap f p⁻¹)]
-->
[DE s', iD (ap f p ∘ ap f p⁻¹)]
-->
[DE s']
<--
[iE 1, DE s', iD 1]
-/
definition is_set_code (x : BL + TR) (y : pushout f g) : is_set (code x y) :=
begin
induction y using pushout.rec_prop, apply is_set_hom, apply is_set_hom,
end
local attribute is_set_code [instance]
-- encode is easy
definition encode {x : BL + TR} {y : pushout f g} (p : trunc 0 (pushout_of_sum x = y)) :
code x y :=
begin
induction p with p,
exact transport (code x) p id
end
-- decode is harder
definition decode_reduction_rule [unfold 11] ⦃x x' : BL + TR⦄ (i : R x x') :
trunc 0 (pushout_of_sum x = pushout_of_sum x') :=
begin
induction i,
{ exact tap inl f_1},
{ exact tap inr g_1},
{ exact tr (glue (k s))},
{ exact tr (glue (k s))⁻¹},
end
definition decode_list ⦃x x' : BL + TR⦄ (l : paths R x x') :
trunc 0 (pushout_of_sum x = pushout_of_sum x') :=
realize (λa a', trunc 0 (pushout_of_sum a = pushout_of_sum a'))
decode_reduction_rule
(λa, tidp)
(λa₁ a₂ a₃, tconcat) l
definition decode_list_nil (x : BL + TR) : decode_list (@nil _ _ x) = tidp :=
idp
definition decode_list_cons ⦃x₁ x₂ x₃ : BL + TR⦄ (r : R x₂ x₃) (l : paths R x₁ x₂) :
decode_list (r :: l) = tconcat (decode_list l) (decode_reduction_rule r) :=
idp
definition decode_list_singleton ⦃x₁ x₂ : BL + TR⦄ (r : R x₁ x₂) :
decode_list [r] = decode_reduction_rule r :=
realize_singleton (λa b p, tidp_tcon p) r
definition decode_list_pair ⦃x₁ x₂ x₃ : BL + TR⦄ (r₂ : R x₂ x₃) (r₁ : R x₁ x₂) :
decode_list [r₂, r₁] = tconcat (decode_reduction_rule r₁) (decode_reduction_rule r₂) :=
realize_pair (λa b p, tidp_tcon p) r₂ r₁
definition decode_list_append ⦃x₁ x₂ x₃ : BL + TR⦄ (l₂ : paths R x₂ x₃)
(l₁ : paths R x₁ x₂) :
decode_list (l₂ ++ l₁) = tconcat (decode_list l₁) (decode_list l₂) :=
realize_append (λa b c d, tassoc) (λa b, tcon_tidp) l₂ l₁
theorem decode_list_rel ⦃x x' : BL + TR⦄ {l l' : paths R x x'} (H : Q l l') :
decode_list l = decode_list l' :=
begin
induction H,
{ rewrite [decode_list_pair, decode_list_singleton], exact !tap_tcon⁻¹},
{ rewrite [decode_list_pair, decode_list_singleton], exact !tap_tcon⁻¹},
{ rewrite [decode_list_pair, decode_list_nil], exact ap tr !con.right_inv},
{ rewrite [decode_list_pair, decode_list_nil], exact ap tr !con.left_inv},
{ apply decode_list_singleton},
{ apply decode_list_singleton},
{ rewrite [+decode_list_pair], induction h with p, apply ap tr, rewrite [-+ap_compose'],
exact !ap_con_eq_con_ap⁻¹},
{ rewrite [+decode_list_pair], induction h with p, apply ap tr, rewrite [-+ap_compose'],
apply ap_con_eq_con_ap}
end
definition decode_point [unfold 11] {x x' : BL + TR} (c : @hom C _ x x') :
trunc 0 (pushout_of_sum x = pushout_of_sum x') :=
begin
induction c with l,
{ exact decode_list l},
{ induction H with H, refine realize_eq _ _ _ H,
{ intros, apply tassoc},
{ intros, apply tcon_tidp},
{ clear H a a', intros, exact decode_list_rel a}}
end
theorem decode_coh (x : BL + TR) (y : TL) (p : trunc 0 (pushout_of_sum x = inl (f y))) :
p =[glue y] tconcat p (tr (glue y)) :=
begin
induction p with p,
apply trunc_pathover, apply eq_pathover_constant_left_id_right,
apply square_of_eq, exact !idp_con⁻¹
end
definition decode [unfold 7] {x : BL + TR} {y : pushout f g} (c : code x y) :
trunc 0 (pushout_of_sum x = y) :=
begin
induction y using quotient.rec with y,
{ exact decode_point c},
{ induction H with y, apply arrow_pathover_left, intro c,
revert c, apply @set_quotient.rec_prop, { intro z, apply is_trunc_pathover},
intro l,
refine _ ⬝op ap decode_point !quotient.elim_type_eq_of_rel⁻¹,
change pathover (λ a, trunc 0 (eq (pushout_of_sum x) a))
(decode_list l)
(eq_of_rel (pushout_rel f g) (pushout_rel.Rmk f g y))
(decode_point
(code_equiv x y (class_of l))),
note z := ksurj y, revert z,
apply @image.rec, { intro, apply is_trunc_pathover},
intro s p, induction p, rewrite to_fun_code_equiv,
refine _ ⬝op (decode_list_cons (DE k F G s) l)⁻¹,
esimp, generalize decode_list l,
apply @trunc.rec, { intro p, apply is_trunc_pathover},
intro p, apply trunc_pathover, apply eq_pathover_constant_left_id_right,
apply square_of_eq, exact !idp_con⁻¹}
end
-- report the failing of esimp in the commented-out proof below
-- definition decode [unfold 7] {x : BL + TR} {y : pushout f g} (c : code x y) :
-- trunc 0 (pushout_of_sum x = y) :=
-- begin
-- induction y using quotient.rec with y,
-- { exact decode_point c},
-- { induction H with y, apply arrow_pathover_left, intro c,
-- revert c, apply @set_quotient.rec_prop, { intro z, apply is_trunc_pathover},
-- intro l,
-- refine _ ⬝op ap decode_point !quotient.elim_type_eq_of_rel⁻¹,
-- -- REPORT THIS!!! esimp fails here, but works after this change
-- --esimp,
-- change pathover (λ (a : pushout f g), trunc 0 (eq (pushout_of_sum x) a))
-- (decode_point (class_of l))
-- (glue y)
-- (decode_point (class_of ((pushout_prehom_index.lr F G id) :: l))),
-- esimp, rewrite [▸*, decode_list_cons, ▸*], generalize (decode_list l), clear l,
-- apply @trunc.rec, { intro z, apply is_trunc_pathover},
-- intro p, apply trunc_pathover, apply eq_pathover_constant_left_id_right,
-- apply square_of_eq, exact !idp_con⁻¹}
-- end
-- decode-encode is easy
protected theorem decode_encode {x : BL + TR} {y : pushout f g}
(p : trunc 0 (pushout_of_sum x = y)) : decode (encode p) = p :=
begin
induction p with p, induction p, reflexivity
end
definition is_surjective.rec {A B : Type} {f : A → B} (Hf : is_surjective f)
{P : B → Type} [Πb, is_prop (P b)] (H : Πa, P (f a)) (b : B) : P b :=
by induction Hf b; exact p ▸ H a
-- encode-decode is harder
definition code_comp [unfold 8] {x y : BL + TR} {z : pushout f g}
(c : code x (pushout_of_sum y)) (d : code y z) : code x z :=
begin
induction z using quotient.rec with z,
{ exact d ∘ c},
{ induction H with z,
apply arrow_pathover_left, intro d,
refine !pathover_tr ⬝op _,
refine !elim_type_eq_of_rel ⬝ _ ⬝ ap _ !elim_type_eq_of_rel⁻¹,
note q := ksurj z, revert q, apply @image.rec, { intro, apply is_trunc_eq, apply is_set_code},
intro s p, induction p,
refine !to_fun_code_equiv ⬝ _ ⬝ ap (λh, h ∘ c) !to_fun_code_equiv⁻¹, apply assoc}
end
theorem encode_tcon' {x y : BL + TR} {z : pushout f g}
(p : trunc 0 (pushout_of_sum x = pushout_of_sum y))
(q : trunc 0 (pushout_of_sum y = z)):
encode (tconcat p q) = code_comp (encode p) (encode q) :=
begin
induction q with q,
induction q,
refine ap encode !tcon_tidp ⬝ _,
symmetry, apply id_left
end
theorem encode_tcon {x y z : BL + TR}
(p : trunc 0 (pushout_of_sum x = pushout_of_sum y))
(q : trunc 0 (pushout_of_sum y = pushout_of_sum z)):
encode (tconcat p q) = encode q ∘ encode p :=
encode_tcon' p q
open category.bpushout_hom_rel_index
theorem encode_decode_singleton {x y : BL + TR} (r : R x y) :
encode (decode_reduction_rule r) = class_of [r] :=
begin
have is_prop (encode (decode_reduction_rule r) = class_of [r]), from !is_trunc_eq,
induction r,
{ induction f_1 with p, induction p, symmetry, apply eq_of_rel,
apply tr, apply paths_rel_of_Q, apply idD},
{ induction g_1 with p, induction p, symmetry, apply eq_of_rel,
apply tr, apply paths_rel_of_Q, apply idE},
{ refine !elim_type_eq_of_rel ⬝ _, apply to_fun_code_equiv},
{ refine !elim_type_eq_of_rel_inv' ⬝ _, apply ap010 to_inv !code_equiv_eq}
end
local attribute pushout [reducible]
protected theorem encode_decode {x : BL + TR} {y : pushout f g} (c : code x y) :
encode (decode c) = c :=
begin
induction y using quotient.rec_prop with y,
revert c, apply @set_quotient.rec_prop, { intro, apply is_trunc_eq}, intro l,
change encode (decode_list l) = class_of l,
induction l,
{ reflexivity},
{ rewrite [decode_list_cons, encode_tcon, encode_decode_singleton, v_0]}
end
definition pushout_teq_equiv [constructor] (x : BL + TR) (y : pushout f g) :
trunc 0 (pushout_of_sum x = y) ≃ code x y :=
equiv.MK encode
decode
encode_decode
decode_encode
definition vankampen [constructor] (x y : BL + TR) :
trunc 0 (pushout_of_sum x = pushout_of_sum y) ≃ @hom C _ x y :=
pushout_teq_equiv x (pushout_of_sum y)
definition decode_point_comp [unfold 8] {x₁ x₂ x₃ : BL + TR}
(c₂ : @hom C _ x₂ x₃) (c₁ : @hom C _ x₁ x₂) :
decode_point (c₂ ∘ c₁) = tconcat (decode_point c₁) (decode_point c₂) :=
begin
induction c₂ using set_quotient.rec_prop with l₂,
induction c₁ using set_quotient.rec_prop with l₁,
apply decode_list_append
end
definition vankampen_functor [constructor] : C ⇒ fundamental_groupoid (pushout f g) :=
begin
fconstructor,
{ exact pushout_of_sum},
{ intro x y c, exact decode_point c},
{ intro x, reflexivity},
{ intro x y z d c, apply decode_point_comp}
end
definition fully_faithful_vankampen_functor : fully_faithful vankampen_functor :=
begin
intro x x',
fapply adjointify,
{ apply encode},
{ intro p, apply decode_encode},
{ intro c, apply encode_decode}
end
definition essentially_surjective_vankampen_functor : essentially_surjective vankampen_functor :=
begin
intro z, induction z using quotient.rec_prop with x,
apply exists.intro x, reflexivity
end
definition is_weak_equivalence_vankampen_functor [constructor] :
is_weak_equivalence vankampen_functor :=
begin
constructor,
{ exact fully_faithful_vankampen_functor},
{ exact essentially_surjective_vankampen_functor}
end
end
end pushout