129 lines
4.8 KiB
Text
129 lines
4.8 KiB
Text
/-
|
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
Author: Floris van Doorn
|
|
|
|
Theorems about the universe
|
|
-/
|
|
|
|
-- see also init.ua
|
|
|
|
import .bool .trunc .lift .pullback
|
|
|
|
open is_trunc bool lift unit eq pi equiv sum sigma fiber prod pullback is_equiv sigma.ops
|
|
pointed
|
|
namespace univ
|
|
|
|
universe variables u v
|
|
variables {A B : Type.{u}} {a : A} {b : B}
|
|
|
|
/- Pathovers -/
|
|
|
|
definition eq_of_pathover_ua {f : A ≃ B} (p : a =[ua f] b) : f a = b :=
|
|
!cast_ua⁻¹ ⬝ tr_eq_of_pathover p
|
|
|
|
definition pathover_ua {f : A ≃ B} (p : f a = b) : a =[ua f] b :=
|
|
pathover_of_tr_eq (!cast_ua ⬝ p)
|
|
|
|
definition pathover_ua_equiv (f : A ≃ B) : (a =[ua f] b) ≃ (f a = b) :=
|
|
equiv.MK eq_of_pathover_ua
|
|
pathover_ua
|
|
abstract begin
|
|
intro p, unfold [pathover_ua,eq_of_pathover_ua],
|
|
rewrite [to_right_inv !pathover_equiv_tr_eq, inv_con_cancel_left]
|
|
end end
|
|
abstract begin
|
|
intro p, unfold [pathover_ua,eq_of_pathover_ua],
|
|
rewrite [con_inv_cancel_left, to_left_inv !pathover_equiv_tr_eq]
|
|
end end
|
|
|
|
/- Properties which can be disproven for the universe -/
|
|
|
|
definition not_is_set_type0 : ¬is_set Type₀ :=
|
|
assume H : is_set Type₀,
|
|
absurd !is_set.elim eq_bnot_ne_idp
|
|
|
|
definition not_is_set_type : ¬is_set Type.{u} :=
|
|
assume H : is_set Type,
|
|
absurd (is_trunc_is_embedding_closed lift !trunc_index.minus_one_le_succ) not_is_set_type0
|
|
|
|
definition not_double_negation_elimination0 : ¬Π(A : Type₀), ¬¬A → A :=
|
|
begin
|
|
intro f,
|
|
have u : ¬¬bool, by exact (λg, g tt),
|
|
let H1 := apd f eq_bnot,
|
|
note H2 := apo10 H1 u,
|
|
have p : eq_bnot ▸ u = u, from !is_prop.elim,
|
|
rewrite p at H2,
|
|
note H3 := eq_of_pathover_ua H2, esimp at H3, --TODO: use apply ... at after #700
|
|
exact absurd H3 (bnot_ne (f bool u)),
|
|
end
|
|
|
|
definition not_double_negation_elimination : ¬Π(A : Type), ¬¬A → A :=
|
|
begin
|
|
intro f,
|
|
apply not_double_negation_elimination0,
|
|
intro A nna, refine down (f _ _),
|
|
intro na,
|
|
have ¬A, begin intro a, exact absurd (up a) na end,
|
|
exact absurd this nna
|
|
end
|
|
|
|
definition not_excluded_middle : ¬Π(A : Type), A + ¬A :=
|
|
begin
|
|
intro f,
|
|
apply not_double_negation_elimination,
|
|
intro A nna,
|
|
induction (f A) with a na,
|
|
exact a,
|
|
exact absurd na nna
|
|
end
|
|
|
|
definition characteristic_map [unfold 2] {B : Type.{u}} (p : Σ(A : Type.{max u v}), A → B)
|
|
(b : B) : Type.{max u v} :=
|
|
by induction p with A f; exact fiber f b
|
|
|
|
definition characteristic_map_inv [unfold 2] {B : Type.{u}} (P : B → Type.{max u v}) :
|
|
Σ(A : Type.{max u v}), A → B :=
|
|
⟨(Σb, P b), pr1⟩
|
|
|
|
definition sigma_arrow_equiv_arrow_univ [constructor] (B : Type.{u}) :
|
|
(Σ(A : Type.{max u v}), A → B) ≃ (B → Type.{max u v}) :=
|
|
begin
|
|
fapply equiv.MK,
|
|
{ exact characteristic_map},
|
|
{ exact characteristic_map_inv},
|
|
{ intro P, apply eq_of_homotopy, intro b, esimp, apply ua, apply fiber_pr1},
|
|
{ intro p, induction p with A f, fapply sigma_eq: esimp,
|
|
{ apply ua, apply sigma_fiber_equiv },
|
|
{ apply arrow_pathover_constant_right, intro v,
|
|
rewrite [-cast_def _ v, cast_ua_fn],
|
|
esimp [sigma_fiber_equiv,equiv.trans,equiv.symm,sigma_comm_equiv,comm_equiv_unc],
|
|
induction v with b w, induction w with a p, esimp, exact p⁻¹}}
|
|
end
|
|
|
|
definition is_object_classifier (f : A → B)
|
|
: pullback_square (pointed_fiber f) (fiber f) f pType.carrier :=
|
|
pullback_square.mk
|
|
(λa, idp)
|
|
(is_equiv_of_equiv_of_homotopy
|
|
(calc
|
|
A ≃ Σb, fiber f b : sigma_fiber_equiv
|
|
... ≃ Σb (v : ΣX, X = fiber f b), v.1 : sigma_equiv_sigma_right
|
|
(λb, !sigma_equiv_of_is_contr_left)
|
|
... ≃ Σb X (p : X = fiber f b), X : sigma_equiv_sigma_right
|
|
(λb, !sigma_assoc_equiv)
|
|
... ≃ Σb X (x : X), X = fiber f b : sigma_equiv_sigma_right
|
|
(λb, sigma_equiv_sigma_right
|
|
(λX, !comm_equiv_nondep))
|
|
... ≃ Σb (v : ΣX, X), v.1 = fiber f b : sigma_equiv_sigma_right
|
|
(λb, !sigma_assoc_equiv⁻¹ᵉ)
|
|
... ≃ Σb (Y : Type*), Y = fiber f b : sigma_equiv_sigma_right
|
|
(λb, sigma_equiv_sigma (pType.sigma_char)⁻¹ᵉ
|
|
(λv, sigma.rec_on v (λx y, equiv.refl)))
|
|
... ≃ Σ(Y : Type*) b, Y = fiber f b : sigma_comm_equiv
|
|
... ≃ pullback pType.carrier (fiber f) : !pullback.sigma_char⁻¹ᵉ
|
|
)
|
|
proof λb, idp qed)
|
|
|
|
end univ
|