lean2/library/init/nat.lean

316 lines
9.6 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: init.nat
Authors: Floris van Doorn, Leonardo de Moura
-/
prelude
import init.wf init.tactic init.num
open eq.ops decidable
namespace nat
notation `` := nat
inductive lt (a : nat) : nat → Prop :=
| base : lt a (succ a)
| step : Π {b}, lt a b → lt a (succ b)
notation a < b := lt a b
definition le [reducible] (a b : nat) : Prop := a < succ b
notation a <= b := le a b
notation a ≤ b := le a b
definition pred (a : nat) : nat :=
nat.cases_on a zero (λ a₁, a₁)
protected definition is_inhabited [instance] : inhabited nat :=
inhabited.mk zero
protected definition has_decidable_eq [instance] : ∀ x y : nat, decidable (x = y)
| has_decidable_eq zero zero := inl rfl
| has_decidable_eq (succ x) zero := inr (by contradiction)
| has_decidable_eq zero (succ y) := inr (by contradiction)
| has_decidable_eq (succ x) (succ y) :=
match has_decidable_eq x y with
| inl xeqy := inl (by rewrite xeqy)
| inr xney := inr (λ h : succ x = succ y, by injection h with xeqy; exact absurd xeqy xney)
end
-- less-than is well-founded
theorem lt.wf [instance] : well_founded lt :=
well_founded.intro (λn, nat.rec_on n
(acc.intro zero (λ (y : nat) (hlt : y < zero),
have aux : ∀ {n₁}, y < n₁ → zero = n₁ → acc lt y, from
λ n₁ hlt, nat.lt.cases_on hlt
(by contradiction)
(by contradiction),
aux hlt rfl))
(λ (n : nat) (ih : acc lt n),
acc.intro (succ n) (λ (m : nat) (hlt : m < succ n),
have aux : ∀ {n₁} (hlt : m < n₁), succ n = n₁ → acc lt m, from
λ n₁ hlt, nat.lt.cases_on hlt
(λ (sn_eq_sm : succ n = succ m),
by injection sn_eq_sm with neqm; rewrite neqm at ih; exact ih)
(λ b (hlt : m < b) (sn_eq_sb : succ n = succ b),
by injection sn_eq_sb with neqb; rewrite neqb at ih; exact acc.inv ih hlt),
aux hlt rfl)))
definition measure {A : Type} (f : A → nat) : A → A → Prop :=
inv_image lt f
definition measure.wf {A : Type} (f : A → nat) : well_founded (measure f) :=
inv_image.wf f lt.wf
theorem not_lt_zero (a : nat) : ¬ a < zero :=
have aux : ∀ {b}, a < b → b = zero → false, from
λ b H, lt.cases_on H
(by contradiction)
(by contradiction),
λ H, aux H rfl
theorem zero_lt_succ (a : nat) : zero < succ a :=
nat.rec_on a
(lt.base zero)
(λ a (hlt : zero < succ a), lt.step hlt)
theorem lt.trans [trans] {a b c : nat} (H₁ : a < b) (H₂ : b < c) : a < c :=
have aux : a < b → a < c, from
lt.rec_on H₂
(λ h₁, lt.step h₁)
(λ b₁ bb₁ ih h₁, lt.step (ih h₁)),
aux H₁
theorem succ_lt_succ {a b : nat} (H : a < b) : succ a < succ b :=
lt.rec_on H
(lt.base (succ a))
(λ b hlt ih, lt.trans ih (lt.base (succ b)))
theorem lt_of_succ_lt {a b : nat} (H : succ a < b) : a < b :=
lt.rec_on H
(lt.step (lt.base a))
(λ b h ih, lt.step ih)
theorem lt_of_succ_lt_succ {a b : nat} (H : succ a < succ b) : a < b :=
have aux : pred (succ a) < pred (succ b), from
lt.rec_on H
(lt.base a)
(λ (b : nat) (hlt : succ a < b) ih,
show pred (succ a) < pred (succ b), from
lt_of_succ_lt hlt),
aux
definition decidable_lt [instance] : decidable_rel lt :=
λ a b, nat.rec_on b
(λ (a : nat), inr (not_lt_zero a))
(λ (b₁ : nat) (ih : ∀ a, decidable (a < b₁)) (a : nat), nat.cases_on a
(inl !zero_lt_succ)
(λ a, decidable.rec_on (ih a)
(λ h_pos : a < b₁, inl (succ_lt_succ h_pos))
(λ h_neg : ¬ a < b₁,
have aux : ¬ succ a < succ b₁, from
λ h : succ a < succ b₁, h_neg (lt_of_succ_lt_succ h),
inr aux)))
a
theorem le.refl (a : nat) : a ≤ a :=
lt.base a
theorem le_of_lt {a b : nat} (H : a < b) : a ≤ b :=
lt.step H
theorem eq_or_lt_of_le {a b : nat} (H : a ≤ b) : a = b a < b :=
begin
cases H with b hlt,
apply or.inl rfl,
apply or.inr hlt
end
theorem le_of_eq_or_lt {a b : nat} (H : a = b a < b) : a ≤ b :=
or.rec_on H
(λ hl, eq.rec_on hl !le.refl)
(λ hr, le_of_lt hr)
definition decidable_le [instance] : decidable_rel le :=
λ a b, decidable_of_decidable_of_iff _ (iff.intro le_of_eq_or_lt eq_or_lt_of_le)
theorem le.rec_on {a : nat} {P : nat → Prop} {b : nat} (H : a ≤ b) (H₁ : P a) (H₂ : ∀ b, a < b → P b) : P b :=
begin
cases H with b hlt,
apply H₁,
apply H₂ b hlt
end
theorem lt.irrefl (a : nat) : ¬ a < a :=
nat.rec_on a
!not_lt_zero
(λ (a : nat) (ih : ¬ a < a) (h : succ a < succ a),
ih (lt_of_succ_lt_succ h))
theorem lt.asymm {a b : nat} (H : a < b) : ¬ b < a :=
lt.rec_on H
(λ h : succ a < a, !lt.irrefl (lt_of_succ_lt h))
(λ b hlt (ih : ¬ b < a) (h : succ b < a), ih (lt_of_succ_lt h))
theorem lt.trichotomy (a b : nat) : a < b a = b b < a :=
nat.rec_on b
(λa, nat.cases_on a
(or.inr (or.inl rfl))
(λ a₁, or.inr (or.inr !zero_lt_succ)))
(λ b₁ (ih : ∀a, a < b₁ a = b₁ b₁ < a) (a : nat), nat.cases_on a
(or.inl !zero_lt_succ)
(λ a, or.rec_on (ih a)
(λ h : a < b₁, or.inl (succ_lt_succ h))
(λ h, or.rec_on h
(λ h : a = b₁, or.inr (or.inl (eq.rec_on h rfl)))
(λ h : b₁ < a, or.inr (or.inr (succ_lt_succ h))))))
a
theorem eq_or_lt_of_not_lt {a b : nat} (hnlt : ¬ a < b) : a = b b < a :=
or.rec_on (lt.trichotomy a b)
(λ hlt, absurd hlt hnlt)
(λ h, h)
theorem lt_succ_of_le {a b : nat} (h : a ≤ b) : a < succ b :=
h
theorem lt_of_succ_le {a b : nat} (h : succ a ≤ b) : a < b :=
lt_of_succ_lt_succ h
theorem le_succ_of_le {a b : nat} (h : a ≤ b) : a ≤ succ b :=
lt.step h
theorem succ_le_of_lt {a b : nat} (h : a < b) : succ a ≤ b :=
succ_lt_succ h
theorem le.trans [trans] {a b c : nat} (h₁ : a ≤ b) (h₂ : b ≤ c) : a ≤ c :=
begin
cases h₁ with b' hlt,
apply h₂,
apply lt.trans hlt h₂
end
theorem lt_of_le_of_lt [trans] {a b c : nat} (h₁ : a ≤ b) (h₂ : b < c) : a < c :=
begin
cases h₁ with b' hlt,
apply h₂,
apply lt.trans hlt h₂
end
theorem lt_of_lt_of_le [trans] {a b c : nat} (h₁ : a < b) (h₂ : b ≤ c) : a < c :=
begin
cases h₁ with b' hlt,
apply lt_of_succ_lt_succ h₂,
apply lt.trans hlt (lt_of_succ_lt_succ h₂)
end
definition max (a b : nat) : nat :=
if a < b then b else a
definition min (a b : nat) : nat :=
if a < b then a else b
theorem max_self (a : nat) : max a a = a :=
eq.rec_on !if_t_t rfl
theorem max_eq_right {a b : nat} (H : a < b) : max a b = b :=
if_pos H
theorem max_eq_left {a b : nat} (H : ¬ a < b) : max a b = a :=
if_neg H
theorem eq_max_right {a b : nat} (H : a < b) : b = max a b :=
eq.rec_on (max_eq_right H) rfl
theorem eq_max_left {a b : nat} (H : ¬ a < b) : a = max a b :=
eq.rec_on (max_eq_left H) rfl
theorem le_max_left (a b : nat) : a ≤ max a b :=
by_cases
(λ h : a < b, le_of_lt (eq.rec_on (eq_max_right h) h))
(λ h : ¬ a < b, eq.rec_on (eq_max_left h) !le.refl)
theorem le_max_right (a b : nat) : b ≤ max a b :=
by_cases
(λ h : a < b, eq.rec_on (eq_max_right h) !le.refl)
(λ h : ¬ a < b, or.rec_on (eq_or_lt_of_not_lt h)
(λ heq, eq.rec_on heq (eq.rec_on (eq.symm (max_self a)) !le.refl))
(λ h : b < a,
have aux : a = max a b, from eq_max_left (lt.asymm h),
eq.rec_on aux (le_of_lt h)))
definition gt [reducible] a b := lt b a
definition decidable_gt [instance] : decidable_rel gt :=
_
notation a > b := gt a b
definition ge [reducible] a b := le b a
definition decidable_ge [instance] : decidable_rel ge :=
_
notation a >= b := ge a b
notation a ≥ b := ge a b
-- add is defined in init.num
definition sub (a b : nat) : nat :=
nat.rec_on b a (λ b₁ r, pred r)
notation a - b := sub a b
definition mul (a b : nat) : nat :=
nat.rec_on b zero (λ b₁ r, r + a)
notation a * b := mul a b
section
local attribute sub [reducible]
theorem succ_sub_succ_eq_sub (a b : nat) : succ a - succ b = a - b :=
nat.rec_on b
rfl
(λ b₁ (ih : succ a - succ b₁ = a - b₁),
eq.rec_on ih (eq.refl (pred (succ a - succ b₁))))
end
theorem sub_eq_succ_sub_succ (a b : nat) : a - b = succ a - succ b :=
eq.rec_on (succ_sub_succ_eq_sub a b) rfl
theorem zero_sub_eq_zero (a : nat) : zero - a = zero :=
nat.rec_on a
rfl
(λ a₁ (ih : zero - a₁ = zero),
eq.rec_on ih (eq.refl (pred (zero - a₁))))
theorem zero_eq_zero_sub (a : nat) : zero = zero - a :=
eq.rec_on (zero_sub_eq_zero a) rfl
theorem sub_lt {a b : nat} : zero < a → zero < b → a - b < a :=
have aux : Π {a}, zero < a → Π {b}, zero < b → a - b < a, from
λa h₁, lt.rec_on h₁
(λb h₂, lt.cases_on h₂
(lt.base zero)
(λ b₁ bpos,
eq.rec_on (sub_eq_succ_sub_succ zero b₁)
(eq.rec_on (zero_eq_zero_sub b₁) (lt.base zero))))
(λa₁ apos ih b h₂, lt.cases_on h₂
(lt.base a₁)
(λ b₁ bpos,
eq.rec_on (sub_eq_succ_sub_succ a₁ b₁)
(lt.trans (@ih b₁ bpos) (lt.base a₁)))),
λ h₁ h₂, aux h₁ h₂
theorem pred_le (a : nat) : pred a ≤ a :=
nat.cases_on a
(le.refl zero)
(λ a₁, le_of_lt (lt.base a₁))
theorem sub_le (a b : nat) : a - b ≤ a :=
nat.induction_on b
(le.refl a)
(λ b₁ ih, le.trans !pred_le ih)
end nat