6569b07b7c
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
39 lines
1.1 KiB
Text
39 lines
1.1 KiB
Text
(*
|
|
import("tactic.lua")
|
|
-- Define a simple tactic using Lua
|
|
auto = Repeat(OrElse(assumption_tac(), conj_tac(), conj_hyp_tac()))
|
|
*)
|
|
|
|
Theorem T1 (A B : Bool) : A /\ B -> B /\ A :=
|
|
fun assumption : A /\ B,
|
|
let lemma1 : A := (by auto),
|
|
lemma2 : B := (by auto)
|
|
in (have B /\ A by auto)
|
|
|
|
print Environment 1. -- print proof for the previous theorem
|
|
|
|
Theorem T2 (A B : Bool) : A /\ B -> B /\ A :=
|
|
fun assumption : A /\ B,
|
|
let lemma1 : A := _,
|
|
lemma2 : B := _
|
|
in _.
|
|
auto. done.
|
|
auto. done.
|
|
auto. done.
|
|
|
|
Theorem T3 (A B : Bool) : A /\ B -> B /\ A :=
|
|
fun assumption : A /\ B,
|
|
let lemma1 : A := _,
|
|
lemma2 : B := _
|
|
in _.
|
|
conj_hyp. exact. done.
|
|
conj_hyp. exact. done.
|
|
apply Conj. exact. done.
|
|
|
|
Theorem T4 (A B : Bool) : A /\ B -> B /\ A :=
|
|
fun assumption : A /\ B,
|
|
let lemma1 : A := _,
|
|
lemma2 : B := _
|
|
in (have B /\ A by auto).
|
|
conj_hyp. exact. done.
|
|
conj_hyp. exact. done.
|