4ec0e1b07c
Now, it automatically supports transitivity of the form (R a b) -> (b = c) -> R a c (a = b) -> (R b c) -> R a c closes #507
499 lines
15 KiB
Text
499 lines
15 KiB
Text
/-
|
||
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
|
||
Module: init.logic
|
||
Authors: Leonardo de Moura, Jeremy Avigad, Floris van Doorn
|
||
-/
|
||
prelude
|
||
import init.datatypes init.reserved_notation
|
||
|
||
/- implication -/
|
||
|
||
definition trivial := true.intro
|
||
|
||
definition not (a : Prop) := a → false
|
||
prefix `¬` := not
|
||
|
||
definition absurd {a : Prop} {b : Type} (H1 : a) (H2 : ¬a) : b :=
|
||
false.rec b (H2 H1)
|
||
|
||
/- not -/
|
||
|
||
theorem not_false : ¬false :=
|
||
assume H : false, H
|
||
|
||
/- eq -/
|
||
|
||
notation a = b := eq a b
|
||
definition rfl {A : Type} {a : A} := eq.refl a
|
||
|
||
-- proof irrelevance is built in
|
||
theorem proof_irrel {a : Prop} (H₁ H₂ : a) : H₁ = H₂ :=
|
||
rfl
|
||
|
||
namespace eq
|
||
variables {A : Type}
|
||
variables {a b c a': A}
|
||
|
||
theorem subst {P : A → Prop} (H₁ : a = b) (H₂ : P a) : P b :=
|
||
eq.rec H₂ H₁
|
||
|
||
theorem trans (H₁ : a = b) (H₂ : b = c) : a = c :=
|
||
subst H₂ H₁
|
||
|
||
definition symm (H : a = b) : b = a :=
|
||
eq.rec (refl a) H
|
||
|
||
namespace ops
|
||
notation H `⁻¹` := symm H --input with \sy or \-1 or \inv
|
||
notation H1 ⬝ H2 := trans H1 H2
|
||
notation H1 ▸ H2 := subst H1 H2
|
||
end ops
|
||
end eq
|
||
|
||
section
|
||
variables {A : Type} {a b c: A}
|
||
open eq.ops
|
||
|
||
definition trans_rel_left (R : A → A → Prop) (H₁ : R a b) (H₂ : b = c) : R a c :=
|
||
H₂ ▸ H₁
|
||
|
||
definition trans_rel_right (R : A → A → Prop) (H₁ : a = b) (H₂ : R b c) : R a c :=
|
||
H₁⁻¹ ▸ H₂
|
||
end
|
||
|
||
section
|
||
variable {p : Prop}
|
||
open eq.ops
|
||
|
||
theorem of_eq_true (H : p = true) : p :=
|
||
H⁻¹ ▸ trivial
|
||
|
||
theorem not_of_eq_false (H : p = false) : ¬p :=
|
||
assume Hp, H ▸ Hp
|
||
end
|
||
|
||
calc_subst eq.subst
|
||
calc_refl eq.refl
|
||
calc_trans eq.trans
|
||
calc_symm eq.symm
|
||
|
||
/- ne -/
|
||
|
||
definition ne {A : Type} (a b : A) := ¬(a = b)
|
||
notation a ≠ b := ne a b
|
||
|
||
namespace ne
|
||
open eq.ops
|
||
variable {A : Type}
|
||
variables {a b : A}
|
||
|
||
theorem intro : (a = b → false) → a ≠ b :=
|
||
assume H, H
|
||
|
||
theorem elim : a ≠ b → a = b → false :=
|
||
assume H₁ H₂, H₁ H₂
|
||
|
||
theorem irrefl : a ≠ a → false :=
|
||
assume H, H rfl
|
||
|
||
theorem symm : a ≠ b → b ≠ a :=
|
||
assume (H : a ≠ b) (H₁ : b = a), H (H₁⁻¹)
|
||
end ne
|
||
|
||
section
|
||
open eq.ops
|
||
variables {A : Type} {a b c : A}
|
||
|
||
theorem false.of_ne : a ≠ a → false :=
|
||
assume H, H rfl
|
||
end
|
||
|
||
infixl `==`:50 := heq
|
||
|
||
namespace heq
|
||
universe variable u
|
||
variables {A B C : Type.{u}} {a a' : A} {b b' : B} {c : C}
|
||
|
||
definition to_eq (H : a == a') : a = a' :=
|
||
have H₁ : ∀ (Ht : A = A), eq.rec_on Ht a = a, from
|
||
λ Ht, eq.refl (eq.rec_on Ht a),
|
||
heq.rec_on H H₁ (eq.refl A)
|
||
|
||
definition elim {A : Type} {a : A} {P : A → Type} {b : A} (H₁ : a == b) (H₂ : P a) : P b :=
|
||
eq.rec_on (to_eq H₁) H₂
|
||
|
||
theorem subst {P : ∀T : Type, T → Prop} (H₁ : a == b) (H₂ : P A a) : P B b :=
|
||
heq.rec_on H₁ H₂
|
||
|
||
theorem symm (H : a == b) : b == a :=
|
||
heq.rec_on H (refl a)
|
||
|
||
theorem of_eq (H : a = a') : a == a' :=
|
||
eq.subst H (refl a)
|
||
|
||
theorem trans (H₁ : a == b) (H₂ : b == c) : a == c :=
|
||
subst H₂ H₁
|
||
|
||
theorem of_heq_of_eq (H₁ : a == b) (H₂ : b = b') : a == b' :=
|
||
trans H₁ (of_eq H₂)
|
||
|
||
theorem of_eq_of_heq (H₁ : a = a') (H₂ : a' == b) : a == b :=
|
||
trans (of_eq H₁) H₂
|
||
end heq
|
||
|
||
theorem of_heq_true {a : Prop} (H : a == true) : a :=
|
||
of_eq_true (heq.to_eq H)
|
||
|
||
calc_trans heq.trans
|
||
calc_trans heq.of_heq_of_eq
|
||
calc_trans heq.of_eq_of_heq
|
||
calc_symm heq.symm
|
||
|
||
/- and -/
|
||
|
||
notation a /\ b := and a b
|
||
notation a ∧ b := and a b
|
||
|
||
variables {a b c d : Prop}
|
||
|
||
theorem and.elim (H₁ : a ∧ b) (H₂ : a → b → c) : c :=
|
||
and.rec H₂ H₁
|
||
|
||
/- or -/
|
||
|
||
notation a `\/` b := or a b
|
||
notation a ∨ b := or a b
|
||
|
||
namespace or
|
||
theorem elim (H₁ : a ∨ b) (H₂ : a → c) (H₃ : b → c) : c :=
|
||
or.rec H₂ H₃ H₁
|
||
end or
|
||
|
||
/- iff -/
|
||
|
||
definition iff (a b : Prop) := (a → b) ∧ (b → a)
|
||
|
||
notation a <-> b := iff a b
|
||
notation a ↔ b := iff a b
|
||
|
||
namespace iff
|
||
definition intro (H₁ : a → b) (H₂ : b → a) : a ↔ b :=
|
||
and.intro H₁ H₂
|
||
|
||
definition elim (H₁ : (a → b) → (b → a) → c) (H₂ : a ↔ b) : c :=
|
||
and.rec H₁ H₂
|
||
|
||
definition elim_left (H : a ↔ b) : a → b :=
|
||
elim (assume H₁ H₂, H₁) H
|
||
|
||
definition mp := @elim_left
|
||
|
||
definition elim_right (H : a ↔ b) : b → a :=
|
||
elim (assume H₁ H₂, H₂) H
|
||
|
||
definition mp' := @elim_right
|
||
|
||
definition refl (a : Prop) : a ↔ a :=
|
||
intro (assume H, H) (assume H, H)
|
||
|
||
definition rfl {a : Prop} : a ↔ a :=
|
||
refl a
|
||
|
||
theorem trans (H₁ : a ↔ b) (H₂ : b ↔ c) : a ↔ c :=
|
||
intro
|
||
(assume Ha, elim_left H₂ (elim_left H₁ Ha))
|
||
(assume Hc, elim_right H₁ (elim_right H₂ Hc))
|
||
|
||
theorem symm (H : a ↔ b) : b ↔ a :=
|
||
intro
|
||
(assume Hb, elim_right H Hb)
|
||
(assume Ha, elim_left H Ha)
|
||
|
||
open eq.ops
|
||
theorem of_eq {a b : Prop} (H : a = b) : a ↔ b :=
|
||
iff.intro (λ Ha, H ▸ Ha) (λ Hb, H⁻¹ ▸ Hb)
|
||
end iff
|
||
|
||
definition not_iff_not_of_iff (H₁ : a ↔ b) : ¬a ↔ ¬b :=
|
||
iff.intro
|
||
(assume (Hna : ¬ a) (Hb : b), absurd (iff.elim_right H₁ Hb) Hna)
|
||
(assume (Hnb : ¬ b) (Ha : a), absurd (iff.elim_left H₁ Ha) Hnb)
|
||
|
||
theorem of_iff_true (H : a ↔ true) : a :=
|
||
iff.mp (iff.symm H) trivial
|
||
|
||
theorem not_of_iff_false (H : a ↔ false) : ¬a :=
|
||
assume Ha : a, iff.mp H Ha
|
||
|
||
calc_refl iff.refl
|
||
calc_trans iff.trans
|
||
|
||
inductive Exists {A : Type} (P : A → Prop) : Prop :=
|
||
intro : ∀ (a : A), P a → Exists P
|
||
|
||
definition exists.intro := @Exists.intro
|
||
|
||
notation `exists` binders `,` r:(scoped P, Exists P) := r
|
||
notation `∃` binders `,` r:(scoped P, Exists P) := r
|
||
|
||
theorem exists.elim {A : Type} {p : A → Prop} {B : Prop} (H1 : ∃x, p x) (H2 : ∀ (a : A) (H : p a), B) : B :=
|
||
Exists.rec H2 H1
|
||
|
||
/- decidable -/
|
||
|
||
inductive decidable [class] (p : Prop) : Type :=
|
||
| inl : p → decidable p
|
||
| inr : ¬p → decidable p
|
||
|
||
definition decidable_true [instance] : decidable true :=
|
||
decidable.inl trivial
|
||
|
||
definition decidable_false [instance] : decidable false :=
|
||
decidable.inr not_false
|
||
|
||
namespace decidable
|
||
variables {p q : Prop}
|
||
|
||
definition rec_on_true [H : decidable p] {H1 : p → Type} {H2 : ¬p → Type} (H3 : p) (H4 : H1 H3)
|
||
: decidable.rec_on H H1 H2 :=
|
||
decidable.rec_on H (λh, H4) (λh, !false.rec (h H3))
|
||
|
||
definition rec_on_false [H : decidable p] {H1 : p → Type} {H2 : ¬p → Type} (H3 : ¬p) (H4 : H2 H3)
|
||
: decidable.rec_on H H1 H2 :=
|
||
decidable.rec_on H (λh, false.rec _ (H3 h)) (λh, H4)
|
||
|
||
definition by_cases {q : Type} [C : decidable p] (Hpq : p → q) (Hnpq : ¬p → q) : q :=
|
||
decidable.rec_on C (assume Hp, Hpq Hp) (assume Hnp, Hnpq Hnp)
|
||
|
||
theorem em (p : Prop) [H : decidable p] : p ∨ ¬p :=
|
||
by_cases (λ Hp, or.inl Hp) (λ Hnp, or.inr Hnp)
|
||
|
||
theorem by_contradiction [Hp : decidable p] (H : ¬p → false) : p :=
|
||
by_cases
|
||
(assume H1 : p, H1)
|
||
(assume H1 : ¬p, false.rec _ (H H1))
|
||
end decidable
|
||
|
||
section
|
||
variables {p q : Prop}
|
||
open decidable
|
||
definition decidable_of_decidable_of_iff (Hp : decidable p) (H : p ↔ q) : decidable q :=
|
||
decidable.rec_on Hp
|
||
(assume Hp : p, inl (iff.elim_left H Hp))
|
||
(assume Hnp : ¬p, inr (iff.elim_left (not_iff_not_of_iff H) Hnp))
|
||
|
||
definition decidable_of_decidable_of_eq (Hp : decidable p) (H : p = q) : decidable q :=
|
||
decidable_of_decidable_of_iff Hp (iff.of_eq H)
|
||
end
|
||
|
||
section
|
||
variables {p q : Prop}
|
||
open decidable (rec_on inl inr)
|
||
|
||
definition decidable_and [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p ∧ q) :=
|
||
rec_on Hp
|
||
(assume Hp : p, rec_on Hq
|
||
(assume Hq : q, inl (and.intro Hp Hq))
|
||
(assume Hnq : ¬q, inr (assume H : p ∧ q, and.rec_on H (assume Hp Hq, absurd Hq Hnq))))
|
||
(assume Hnp : ¬p, inr (assume H : p ∧ q, and.rec_on H (assume Hp Hq, absurd Hp Hnp)))
|
||
|
||
definition decidable_or [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p ∨ q) :=
|
||
rec_on Hp
|
||
(assume Hp : p, inl (or.inl Hp))
|
||
(assume Hnp : ¬p, rec_on Hq
|
||
(assume Hq : q, inl (or.inr Hq))
|
||
(assume Hnq : ¬q, inr (assume H : p ∨ q, or.elim H (assume Hp, absurd Hp Hnp) (assume Hq, absurd Hq Hnq))))
|
||
|
||
definition decidable_not [instance] [Hp : decidable p] : decidable (¬p) :=
|
||
rec_on Hp
|
||
(assume Hp, inr (λ Hnp, absurd Hp Hnp))
|
||
(assume Hnp, inl Hnp)
|
||
|
||
definition decidable_implies [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p → q) :=
|
||
rec_on Hp
|
||
(assume Hp : p, rec_on Hq
|
||
(assume Hq : q, inl (assume H, Hq))
|
||
(assume Hnq : ¬q, inr (assume H : p → q, absurd (H Hp) Hnq)))
|
||
(assume Hnp : ¬p, inl (assume Hp, absurd Hp Hnp))
|
||
|
||
definition decidable_iff [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p ↔ q) :=
|
||
show decidable ((p → q) ∧ (q → p)), from _
|
||
|
||
end
|
||
|
||
definition decidable_pred [reducible] {A : Type} (R : A → Prop) := Π (a : A), decidable (R a)
|
||
definition decidable_rel [reducible] {A : Type} (R : A → A → Prop) := Π (a b : A), decidable (R a b)
|
||
definition decidable_eq [reducible] (A : Type) := decidable_rel (@eq A)
|
||
definition decidable_ne [instance] {A : Type} [H : decidable_eq A] : Π (a b : A), decidable (a ≠ b) :=
|
||
show Π x y : A, decidable (x = y → false), from _
|
||
|
||
namespace bool
|
||
definition ff_ne_tt : ff = tt → false
|
||
| [none]
|
||
end bool
|
||
|
||
open bool
|
||
definition is_dec_eq {A : Type} (p : A → A → bool) : Prop := ∀ ⦃x y : A⦄, p x y = tt → x = y
|
||
definition is_dec_refl {A : Type} (p : A → A → bool) : Prop := ∀x, p x x = tt
|
||
|
||
open decidable
|
||
protected definition bool.has_decidable_eq [instance] : ∀a b : bool, decidable (a = b)
|
||
| ff ff := inl rfl
|
||
| ff tt := inr ff_ne_tt
|
||
| tt ff := inr (ne.symm ff_ne_tt)
|
||
| tt tt := inl rfl
|
||
|
||
definition decidable_eq_of_bool_pred {A : Type} {p : A → A → bool} (H₁ : is_dec_eq p) (H₂ : is_dec_refl p) : decidable_eq A :=
|
||
take x y : A, by_cases
|
||
(assume Hp : p x y = tt, inl (H₁ Hp))
|
||
(assume Hn : ¬ p x y = tt, inr (assume Hxy : x = y, absurd (H₂ y) (eq.rec_on Hxy Hn)))
|
||
|
||
theorem decidable_eq_inl_refl {A : Type} [H : decidable_eq A] (a : A) : H a a = inl (eq.refl a) :=
|
||
match H a a with
|
||
| inl e := rfl
|
||
| inr n := absurd rfl n
|
||
end
|
||
|
||
theorem decidable_eq_inr_neg {A : Type} [H : decidable_eq A] {a b : A} : Π n : a ≠ b, H a b = inr n :=
|
||
assume n,
|
||
match H a b with
|
||
| inl e := absurd e n
|
||
| inr n₁ := proof_irrel n n₁ ▸ rfl
|
||
end
|
||
|
||
/- inhabited -/
|
||
|
||
inductive inhabited [class] (A : Type) : Type :=
|
||
mk : A → inhabited A
|
||
|
||
protected definition inhabited.value {A : Type} (h : inhabited A) : A :=
|
||
inhabited.rec (λa, a) h
|
||
|
||
protected definition inhabited.destruct {A : Type} {B : Type} (H1 : inhabited A) (H2 : A → B) : B :=
|
||
inhabited.rec H2 H1
|
||
|
||
definition default (A : Type) [H : inhabited A] : A :=
|
||
inhabited.rec (λa, a) H
|
||
|
||
opaque definition arbitrary (A : Type) [H : inhabited A] : A :=
|
||
inhabited.rec (λa, a) H
|
||
|
||
definition Prop.is_inhabited [instance] : inhabited Prop :=
|
||
inhabited.mk true
|
||
|
||
definition inhabited_fun [instance] (A : Type) {B : Type} [H : inhabited B] : inhabited (A → B) :=
|
||
inhabited.rec_on H (λb, inhabited.mk (λa, b))
|
||
|
||
definition inhabited_Pi [instance] (A : Type) {B : A → Type} [H : Πx, inhabited (B x)] :
|
||
inhabited (Πx, B x) :=
|
||
inhabited.mk (λa, inhabited.rec_on (H a) (λb, b))
|
||
|
||
protected definition bool.is_inhabited [instance] : inhabited bool :=
|
||
inhabited.mk ff
|
||
|
||
inductive nonempty [class] (A : Type) : Prop :=
|
||
intro : A → nonempty A
|
||
|
||
protected definition nonempty.elim {A : Type} {B : Prop} (H1 : nonempty A) (H2 : A → B) : B :=
|
||
nonempty.rec H2 H1
|
||
|
||
theorem nonempty_of_inhabited [instance] {A : Type} [H : inhabited A] : nonempty A :=
|
||
nonempty.intro (default A)
|
||
|
||
/- subsingleton -/
|
||
|
||
inductive subsingleton [class] (A : Type) : Prop :=
|
||
intro : (∀ a b : A, a = b) → subsingleton A
|
||
|
||
protected definition subsingleton.elim {A : Type} [H : subsingleton A] : ∀(a b : A), a = b :=
|
||
subsingleton.rec (fun p, p) H
|
||
|
||
definition subsingleton_prop [instance] (p : Prop) : subsingleton p :=
|
||
subsingleton.intro (λa b, !proof_irrel)
|
||
|
||
definition subsingleton_decidable [instance] (p : Prop) : subsingleton (decidable p) :=
|
||
subsingleton.intro (λ d₁,
|
||
match d₁ with
|
||
| inl t₁ := (λ d₂,
|
||
match d₂ with
|
||
| inl t₂ := eq.rec_on (proof_irrel t₁ t₂) rfl
|
||
| inr f₂ := absurd t₁ f₂
|
||
end)
|
||
| inr f₁ := (λ d₂,
|
||
match d₂ with
|
||
| inl t₂ := absurd t₂ f₁
|
||
| inr f₂ := eq.rec_on (proof_irrel f₁ f₂) rfl
|
||
end)
|
||
end)
|
||
|
||
protected theorem rec_subsingleton {p : Prop} [H : decidable p]
|
||
{H1 : p → Type} {H2 : ¬p → Type}
|
||
[H3 : Π(h : p), subsingleton (H1 h)] [H4 : Π(h : ¬p), subsingleton (H2 h)]
|
||
: subsingleton (decidable.rec_on H H1 H2) :=
|
||
decidable.rec_on H (λh, H3 h) (λh, H4 h) --this can be proven using dependent version of "by_cases"
|
||
|
||
/- if-then-else -/
|
||
|
||
definition ite (c : Prop) [H : decidable c] {A : Type} (t e : A) : A :=
|
||
decidable.rec_on H (λ Hc, t) (λ Hnc, e)
|
||
|
||
definition if_pos {c : Prop} [H : decidable c] (Hc : c) {A : Type} {t e : A} : (if c then t else e) = t :=
|
||
decidable.rec
|
||
(λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t e))
|
||
(λ Hnc : ¬c, absurd Hc Hnc)
|
||
H
|
||
|
||
definition if_neg {c : Prop} [H : decidable c] (Hnc : ¬c) {A : Type} {t e : A} : (if c then t else e) = e :=
|
||
decidable.rec
|
||
(λ Hc : c, absurd Hc Hnc)
|
||
(λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t e))
|
||
H
|
||
|
||
definition if_t_t (c : Prop) [H : decidable c] {A : Type} (t : A) : (if c then t else t) = t :=
|
||
decidable.rec
|
||
(λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t t))
|
||
(λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t t))
|
||
H
|
||
|
||
-- We use "dependent" if-then-else to be able to communicate the if-then-else condition
|
||
-- to the branches
|
||
definition dite (c : Prop) [H : decidable c] {A : Type} (t : c → A) (e : ¬ c → A) : A :=
|
||
decidable.rec_on H (λ Hc, t Hc) (λ Hnc, e Hnc)
|
||
|
||
definition dif_pos {c : Prop} [H : decidable c] (Hc : c) {A : Type} {t : c → A} {e : ¬ c → A} : (if H : c then t H else e H) = t Hc :=
|
||
decidable.rec
|
||
(λ Hc : c, eq.refl (@dite c (decidable.inl Hc) A t e))
|
||
(λ Hnc : ¬c, absurd Hc Hnc)
|
||
H
|
||
|
||
definition dif_neg {c : Prop} [H : decidable c] (Hnc : ¬c) {A : Type} {t : c → A} {e : ¬ c → A} : (if H : c then t H else e H) = e Hnc :=
|
||
decidable.rec
|
||
(λ Hc : c, absurd Hc Hnc)
|
||
(λ Hnc : ¬c, eq.refl (@dite c (decidable.inr Hnc) A t e))
|
||
H
|
||
|
||
-- Remark: dite and ite are "definitionally equal" when we ignore the proofs.
|
||
theorem dite_ite_eq (c : Prop) [H : decidable c] {A : Type} (t : A) (e : A) : dite c (λh, t) (λh, e) = ite c t e :=
|
||
rfl
|
||
|
||
definition is_true (c : Prop) [H : decidable c] : Prop :=
|
||
if c then true else false
|
||
|
||
definition is_false (c : Prop) [H : decidable c] : Prop :=
|
||
if c then false else true
|
||
|
||
theorem of_is_true {c : Prop} [H₁ : decidable c] (H₂ : is_true c) : c :=
|
||
decidable.rec_on H₁ (λ Hc, Hc) (λ Hnc, !false.rec (if_neg Hnc ▸ H₂))
|
||
|
||
notation `dec_trivial` := of_is_true trivial
|
||
|
||
theorem not_of_not_is_true {c : Prop} [H₁ : decidable c] (H₂ : ¬ is_true c) : ¬ c :=
|
||
decidable.rec_on H₁ (λ Hc, absurd true.intro (if_pos Hc ▸ H₂)) (λ Hnc, Hnc)
|
||
|
||
theorem not_of_is_false {c : Prop} [H₁ : decidable c] (H₂ : is_false c) : ¬ c :=
|
||
decidable.rec_on H₁ (λ Hc, !false.rec (if_pos Hc ▸ H₂)) (λ Hnc, Hnc)
|
||
|
||
theorem of_not_is_false {c : Prop} [H₁ : decidable c] (H₂ : ¬ is_false c) : c :=
|
||
decidable.rec_on H₁ (λ Hc, Hc) (λ Hnc, absurd true.intro (if_neg Hnc ▸ H₂))
|