6cdbc0f79f
The theorems are mostly about the interaction between pointed equivalences and pointed homotopies Some of these theorems were missing for (unpointed) equivalences, so I also added them there
190 lines
6.2 KiB
Text
190 lines
6.2 KiB
Text
/-
|
|
Copyright (c) 2014 Jakob von Raumer. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
Authors: Floris van Doorn
|
|
|
|
Ported from Coq HoTT
|
|
-/
|
|
|
|
|
|
import .equiv cubical.square
|
|
|
|
open eq is_equiv equiv equiv.ops pointed is_trunc
|
|
|
|
-- structure pequiv (A B : Type*) :=
|
|
-- (to_pmap : A →* B)
|
|
-- (is_equiv_to_pmap : is_equiv to_pmap)
|
|
|
|
structure pequiv (A B : Type*) extends equiv A B, pmap A B
|
|
|
|
namespace pointed
|
|
|
|
attribute pequiv._trans_of_to_pmap pequiv._trans_of_to_equiv pequiv.to_pmap pequiv.to_equiv
|
|
[unfold 3]
|
|
|
|
variables {A B C : Type*}
|
|
|
|
/- pointed equivalences -/
|
|
|
|
infix ` ≃* `:25 := pequiv
|
|
attribute pequiv.to_pmap [coercion]
|
|
attribute pequiv.to_is_equiv [instance]
|
|
|
|
definition pequiv_of_pmap [constructor] (f : A →* B) (H : is_equiv f) : A ≃* B :=
|
|
pequiv.mk f _ (respect_pt f)
|
|
|
|
definition pequiv_of_equiv [constructor] (f : A ≃ B) (H : f pt = pt) : A ≃* B :=
|
|
pequiv.mk f _ H
|
|
|
|
definition equiv_of_pequiv [constructor] (f : A ≃* B) : A ≃ B :=
|
|
equiv.mk f _
|
|
|
|
definition to_pinv [constructor] (f : A ≃* B) : B →* A :=
|
|
pmap.mk f⁻¹ (ap f⁻¹ (respect_pt f)⁻¹ ⬝ !left_inv)
|
|
|
|
definition pua {A B : Type*} (f : A ≃* B) : A = B :=
|
|
pType_eq (equiv_of_pequiv f) !respect_pt
|
|
|
|
protected definition pequiv.refl [refl] [constructor] (A : Type*) : A ≃* A :=
|
|
pequiv_of_pmap !pid !is_equiv_id
|
|
|
|
protected definition pequiv.rfl [constructor] : A ≃* A :=
|
|
pequiv.refl A
|
|
|
|
protected definition pequiv.symm [symm] (f : A ≃* B) : B ≃* A :=
|
|
pequiv_of_pmap (to_pinv f) !is_equiv_inv
|
|
|
|
protected definition pequiv.trans [trans] (f : A ≃* B) (g : B ≃* C) : A ≃* C :=
|
|
pequiv_of_pmap (pcompose g f) !is_equiv_compose
|
|
|
|
postfix `⁻¹ᵉ*`:(max + 1) := pequiv.symm
|
|
infix ` ⬝e* `:75 := pequiv.trans
|
|
|
|
definition pequiv_rect' (f : A ≃* B) (P : A → B → Type)
|
|
(g : Πb, P (f⁻¹ b) b) (a : A) : P a (f a) :=
|
|
left_inv f a ▸ g (f a)
|
|
|
|
definition pequiv_of_eq [constructor] {A B : Type*} (p : A = B) : A ≃* B :=
|
|
pequiv_of_pmap (pcast p) !is_equiv_tr
|
|
|
|
definition peconcat_eq {A B C : Type*} (p : A ≃* B) (q : B = C) : A ≃* C :=
|
|
p ⬝e* pequiv_of_eq q
|
|
|
|
definition eq_peconcat {A B C : Type*} (p : A = B) (q : B ≃* C) : A ≃* C :=
|
|
pequiv_of_eq p ⬝e* q
|
|
|
|
definition eq_of_pequiv {A B : Type*} (p : A ≃* B) : A = B :=
|
|
pType_eq (equiv_of_pequiv p) !respect_pt
|
|
|
|
definition peap {A B : Type*} (F : Type* → Type*) (p : A ≃* B) : F A ≃* F B :=
|
|
pequiv_of_pmap (pcast (ap F (eq_of_pequiv p))) begin cases eq_of_pequiv p, apply is_equiv_id end
|
|
|
|
definition loop_space_pequiv [constructor] (p : A ≃* B) : Ω A ≃* Ω B :=
|
|
pequiv_of_pmap (ap1 p) (is_equiv_ap1 p)
|
|
|
|
definition pequiv_eq {p q : A ≃* B} (H : p = q :> (A →* B)) : p = q :=
|
|
begin
|
|
cases p with f Hf, cases q with g Hg, esimp at *,
|
|
exact apd011 pequiv_of_pmap H !is_prop.elim
|
|
end
|
|
|
|
definition loop_space_pequiv_rfl
|
|
: loop_space_pequiv (@pequiv.refl A) = @pequiv.refl (Ω A) :=
|
|
begin
|
|
apply pequiv_eq, fapply pmap_eq: esimp,
|
|
{ intro p, exact !idp_con ⬝ !ap_id},
|
|
{ reflexivity}
|
|
end
|
|
|
|
infix ` ⬝e*p `:75 := peconcat_eq
|
|
infix ` ⬝pe* `:75 := eq_peconcat
|
|
|
|
local attribute pequiv.symm [constructor]
|
|
definition pleft_inv (f : A ≃* B) : f⁻¹ᵉ* ∘* f ~* pid A :=
|
|
phomotopy.mk (left_inv f)
|
|
abstract begin
|
|
esimp, rewrite ap_inv, symmetry, apply con_inv_cancel_left
|
|
end end
|
|
|
|
definition pright_inv (f : A ≃* B) : f ∘* f⁻¹ᵉ* ~* pid B :=
|
|
phomotopy.mk (right_inv f)
|
|
abstract begin
|
|
induction f with f H p, esimp,
|
|
rewrite [ap_con, +ap_inv, -adj f, -ap_compose],
|
|
note q := natural_square (right_inv f) p,
|
|
rewrite [ap_id at q],
|
|
apply eq_bot_of_square,
|
|
exact transpose q
|
|
end end
|
|
|
|
definition pcancel_left (f : B ≃* C) {g h : A →* B} (p : f ∘* g ~* f ∘* h) : g ~* h :=
|
|
begin
|
|
refine _⁻¹* ⬝* pwhisker_left f⁻¹ᵉ* p ⬝* _:
|
|
refine !passoc⁻¹* ⬝* _:
|
|
refine pwhisker_right _ (pleft_inv f) ⬝* _:
|
|
apply pid_comp
|
|
end
|
|
|
|
|
|
definition pcancel_right (f : A ≃* B) {g h : B →* C} (p : g ∘* f ~* h ∘* f) : g ~* h :=
|
|
begin
|
|
refine _⁻¹* ⬝* pwhisker_right f⁻¹ᵉ* p ⬝* _:
|
|
refine !passoc ⬝* _:
|
|
refine pwhisker_left _ (pright_inv f) ⬝* _:
|
|
apply comp_pid
|
|
end
|
|
|
|
definition phomotopy_pinv_right_of_phomotopy {f : A ≃* B} {g : B →* C} {h : A →* C}
|
|
(p : g ∘* f ~* h) : g ~* h ∘* f⁻¹ᵉ* :=
|
|
begin
|
|
refine _ ⬝* pwhisker_right _ p, symmetry,
|
|
refine !passoc ⬝* _,
|
|
refine pwhisker_left _ (pright_inv f) ⬝* _,
|
|
apply comp_pid
|
|
end
|
|
|
|
definition phomotopy_of_pinv_right_phomotopy {f : B ≃* A} {g : B →* C} {h : A →* C}
|
|
(p : g ∘* f⁻¹ᵉ* ~* h) : g ~* h ∘* f :=
|
|
begin
|
|
refine _ ⬝* pwhisker_right _ p, symmetry,
|
|
refine !passoc ⬝* _,
|
|
refine pwhisker_left _ (pleft_inv f) ⬝* _,
|
|
apply comp_pid
|
|
end
|
|
|
|
definition pinv_right_phomotopy_of_phomotopy {f : A ≃* B} {g : B →* C} {h : A →* C}
|
|
(p : h ~* g ∘* f) : h ∘* f⁻¹ᵉ* ~* g :=
|
|
(phomotopy_pinv_right_of_phomotopy p⁻¹*)⁻¹*
|
|
|
|
definition phomotopy_of_phomotopy_pinv_right {f : B ≃* A} {g : B →* C} {h : A →* C}
|
|
(p : h ~* g ∘* f⁻¹ᵉ*) : h ∘* f ~* g :=
|
|
(phomotopy_of_pinv_right_phomotopy p⁻¹*)⁻¹*
|
|
|
|
definition phomotopy_pinv_left_of_phomotopy {f : B ≃* C} {g : A →* B} {h : A →* C}
|
|
(p : f ∘* g ~* h) : g ~* f⁻¹ᵉ* ∘* h :=
|
|
begin
|
|
refine _ ⬝* pwhisker_left _ p, symmetry,
|
|
refine !passoc⁻¹* ⬝* _,
|
|
refine pwhisker_right _ (pleft_inv f) ⬝* _,
|
|
apply pid_comp
|
|
end
|
|
|
|
definition phomotopy_of_pinv_left_phomotopy {f : C ≃* B} {g : A →* B} {h : A →* C}
|
|
(p : f⁻¹ᵉ* ∘* g ~* h) : g ~* f ∘* h :=
|
|
begin
|
|
refine _ ⬝* pwhisker_left _ p, symmetry,
|
|
refine !passoc⁻¹* ⬝* _,
|
|
refine pwhisker_right _ (pright_inv f) ⬝* _,
|
|
apply pid_comp
|
|
end
|
|
|
|
definition pinv_left_phomotopy_of_phomotopy {f : B ≃* C} {g : A →* B} {h : A →* C}
|
|
(p : h ~* f ∘* g) : f⁻¹ᵉ* ∘* h ~* g :=
|
|
(phomotopy_pinv_left_of_phomotopy p⁻¹*)⁻¹*
|
|
|
|
|
|
definition phomotopy_of_phomotopy_pinv_left {f : C ≃* B} {g : A →* B} {h : A →* C}
|
|
(p : h ~* f⁻¹ᵉ* ∘* g) : f ∘* h ~* g :=
|
|
(phomotopy_of_pinv_left_phomotopy p⁻¹*)⁻¹*
|
|
|
|
end pointed
|