302 lines
12 KiB
Text
302 lines
12 KiB
Text
/-
|
||
Copyright (c) 2016 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Floris van Doorn, Clive Newstead
|
||
|
||
-/
|
||
|
||
import .LES_of_homotopy_groups .sphere .complex_hopf
|
||
|
||
open eq is_trunc trunc_index pointed algebra trunc nat is_conn fiber pointed unit group
|
||
|
||
namespace is_trunc
|
||
|
||
-- Lemma 8.3.1
|
||
theorem trivial_homotopy_group_of_is_trunc (A : Type*) {n k : ℕ} [is_trunc n A] (H : n < k)
|
||
: is_contr (π[k] A) :=
|
||
begin
|
||
apply is_trunc_trunc_of_is_trunc,
|
||
apply is_contr_loop_of_is_trunc,
|
||
apply @is_trunc_of_le A n _,
|
||
apply trunc_index.le_of_succ_le_succ,
|
||
rewrite [succ_sub_two_succ k],
|
||
exact of_nat_le_of_nat H,
|
||
end
|
||
|
||
theorem trivial_ghomotopy_group_of_is_trunc (A : Type*) (n k : ℕ) [is_trunc n A] (H : n ≤ k)
|
||
: is_contr (πg[k+1] A) :=
|
||
trivial_homotopy_group_of_is_trunc A (lt_succ_of_le H)
|
||
|
||
-- Lemma 8.3.2
|
||
theorem trivial_homotopy_group_of_is_conn (A : Type*) {k n : ℕ} (H : k ≤ n) [is_conn n A]
|
||
: is_contr (π[k] A) :=
|
||
begin
|
||
have H3 : is_contr (ptrunc k A), from is_conn_of_le A (of_nat_le_of_nat H),
|
||
have H4 : is_contr (Ω[k](ptrunc k A)), from !is_trunc_loop_of_is_trunc,
|
||
apply is_trunc_equiv_closed_rev,
|
||
{ apply equiv_of_pequiv (homotopy_group_pequiv_loop_ptrunc k A)}
|
||
end
|
||
|
||
-- Corollary 8.3.3
|
||
section
|
||
open sphere sphere.ops sphere_index
|
||
theorem homotopy_group_sphere_le (n k : ℕ) (H : k < n) : is_contr (π[k] (S* n)) :=
|
||
begin
|
||
cases n with n,
|
||
{ exfalso, apply not_lt_zero, exact H},
|
||
{ have H2 : k ≤ n, from le_of_lt_succ H,
|
||
apply @(trivial_homotopy_group_of_is_conn _ H2) }
|
||
end
|
||
end
|
||
|
||
theorem is_contr_HG_fiber_of_is_connected {A B : Type*} (k n : ℕ) (f : A →* B)
|
||
[H : is_conn_fun n f] (H2 : k ≤ n) : is_contr (π[k] (pfiber f)) :=
|
||
@(trivial_homotopy_group_of_is_conn (pfiber f) H2) (H pt)
|
||
|
||
/- Corollaries of the LES of homotopy groups -/
|
||
local attribute ab_group.to_group [coercion]
|
||
local attribute is_equiv_tinverse [instance]
|
||
open prod chain_complex group fin equiv function is_equiv lift
|
||
|
||
/-
|
||
Because of the construction of the LES this proof only gives us this result when
|
||
A and B live in the same universe (because Lean doesn't have universe cumulativity).
|
||
However, below we also proof that it holds for A and B in arbitrary universes.
|
||
-/
|
||
theorem is_equiv_π_of_is_connected'.{u} {A B : pType.{u}} {n k : ℕ} (f : A →* B)
|
||
(H2 : k ≤ n) [H : is_conn_fun n f] : is_equiv (π→[k] f) :=
|
||
begin
|
||
cases k with k,
|
||
{ /- k = 0 -/
|
||
change (is_equiv (trunc_functor 0 f)), apply is_equiv_trunc_functor_of_is_conn_fun,
|
||
refine is_conn_fun_of_le f (zero_le_of_nat n)},
|
||
{ /- k > 0 -/
|
||
have H2' : k ≤ n, from le.trans !self_le_succ H2,
|
||
exact LES_is_equiv_of_trivial f (succ k) 0
|
||
(@is_contr_HG_fiber_of_is_connected A B k n f H H2')
|
||
(@is_contr_HG_fiber_of_is_connected A B (succ k) n f H H2) },
|
||
end
|
||
|
||
theorem is_equiv_π_of_is_connected.{u v} {A : pType.{u}} {B : pType.{v}} {n k : ℕ} (f : A →* B)
|
||
(H2 : k ≤ n) [H : is_conn_fun n f] : is_equiv (π→[k] f) :=
|
||
begin
|
||
have π→[k] pdown.{v u} ∘* π→[k] (plift_functor f) ∘* π→[k] pup.{u v} ~* π→[k] f,
|
||
begin
|
||
refine pwhisker_left _ !homotopy_group_functor_compose⁻¹* ⬝* _,
|
||
refine !homotopy_group_functor_compose⁻¹* ⬝* _,
|
||
apply homotopy_group_functor_phomotopy, apply plift_functor_phomotopy
|
||
end,
|
||
have π→[k] pdown.{v u} ∘ π→[k] (plift_functor f) ∘ π→[k] pup.{u v} ~ π→[k] f, from this,
|
||
apply is_equiv.homotopy_closed, rotate 1,
|
||
{ exact this},
|
||
{ do 2 apply is_equiv_compose,
|
||
{ apply is_equiv_homotopy_group_functor, apply to_is_equiv !equiv_lift},
|
||
{ refine @(is_equiv_π_of_is_connected' _ H2) _, apply is_conn_fun_lift_functor},
|
||
{ apply is_equiv_homotopy_group_functor, apply to_is_equiv !equiv_lift⁻¹ᵉ}}
|
||
end
|
||
|
||
definition π_equiv_π_of_is_connected {A B : Type*} {n k : ℕ} (f : A →* B)
|
||
(H2 : k ≤ n) [H : is_conn_fun n f] : π[k] A ≃* π[k] B :=
|
||
pequiv_of_pmap (π→[k] f) (is_equiv_π_of_is_connected f H2)
|
||
|
||
-- TODO: prove this for A and B in different universe levels
|
||
theorem is_surjective_π_of_is_connected.{u} {A B : pType.{u}} (n : ℕ) (f : A →* B)
|
||
[H : is_conn_fun n f] : is_surjective (π→[n + 1] f) :=
|
||
@is_surjective_of_trivial _
|
||
(LES_of_homotopy_groups f) _
|
||
(is_exact_LES_of_homotopy_groups f (n, 2))
|
||
(@is_contr_HG_fiber_of_is_connected A B n n f H !le.refl)
|
||
|
||
/-
|
||
Theorem 8.8.3: Whitehead's principle and its corollaries
|
||
-/
|
||
definition whitehead_principle (n : ℕ₋₂) {A B : Type}
|
||
[HA : is_trunc n A] [HB : is_trunc n B] (f : A → B) (H' : is_equiv (trunc_functor 0 f))
|
||
(H : Πa k, is_equiv (π→[k + 1] (pmap_of_map f a))) : is_equiv f :=
|
||
begin
|
||
revert A B HA HB f H' H, induction n with n IH: intros,
|
||
{ apply is_equiv_of_is_contr },
|
||
have Πa, is_equiv (Ω→ (pmap_of_map f a)),
|
||
begin
|
||
intro a,
|
||
apply IH, do 2 (esimp; exact _),
|
||
{ rexact H a 0},
|
||
intro p k,
|
||
have is_equiv (π→[k + 1] (Ω→(pmap_of_map f a))),
|
||
from is_equiv_homotopy_group_functor_ap1 (k+1) (pmap_of_map f a),
|
||
have Π(b : A) (p : a = b),
|
||
is_equiv (pmap.to_fun (π→[k + 1] (pmap_of_map (ap f) p))),
|
||
begin
|
||
intro b p, induction p, apply is_equiv.homotopy_closed, exact this,
|
||
refine homotopy_group_functor_phomotopy _ _,
|
||
apply ap1_pmap_of_map
|
||
end,
|
||
have is_equiv (homotopy_group_pequiv _
|
||
(pequiv_of_eq_pt (!idp_con⁻¹ : ap f p = Ω→ (pmap_of_map f a) p)) ∘
|
||
pmap.to_fun (π→[k + 1] (pmap_of_map (ap f) p))),
|
||
begin
|
||
apply is_equiv_compose, exact this a p,
|
||
end,
|
||
apply is_equiv.homotopy_closed, exact this,
|
||
refine !homotopy_group_functor_compose⁻¹* ⬝* _,
|
||
apply homotopy_group_functor_phomotopy,
|
||
fapply phomotopy.mk,
|
||
{ esimp, intro q, refine !idp_con⁻¹},
|
||
{ esimp, refine !idp_con⁻¹},
|
||
end,
|
||
apply is_equiv_of_is_equiv_ap1_of_is_equiv_trunc
|
||
end
|
||
|
||
definition whitehead_principle_pointed (n : ℕ₋₂) {A B : Type*}
|
||
[HA : is_trunc n A] [HB : is_trunc n B] [is_conn 0 A] (f : A →* B)
|
||
(H : Πk, is_equiv (π→[k] f)) : is_equiv f :=
|
||
begin
|
||
apply whitehead_principle n, rexact H 0,
|
||
intro a k, revert a, apply is_conn.elim -1,
|
||
have is_equiv (π→[k + 1] (pointed_eta_pequiv B ⬝e* (pequiv_of_eq_pt (respect_pt f))⁻¹ᵉ*)
|
||
∘* π→[k + 1] f ∘* π→[k + 1] (pointed_eta_pequiv A)⁻¹ᵉ*),
|
||
begin
|
||
apply is_equiv_compose
|
||
(π→[k + 1] (pointed_eta_pequiv B ⬝e* (pequiv_of_eq_pt (respect_pt f))⁻¹ᵉ*)),
|
||
apply is_equiv_compose (π→[k + 1] f),
|
||
all_goals apply is_equiv_homotopy_group_functor,
|
||
end,
|
||
refine @(is_equiv.homotopy_closed _) _ this _,
|
||
apply to_homotopy,
|
||
refine pwhisker_left _ !homotopy_group_functor_compose⁻¹* ⬝* _,
|
||
refine !homotopy_group_functor_compose⁻¹* ⬝* _,
|
||
apply homotopy_group_functor_phomotopy, apply phomotopy_pmap_of_map
|
||
end
|
||
|
||
open pointed.ops
|
||
definition is_contr_of_trivial_homotopy (n : ℕ₋₂) (A : Type) [is_trunc n A] [is_conn 0 A]
|
||
(H : Πk a, is_contr (π[k] (pointed.MK A a))) : is_contr A :=
|
||
begin
|
||
fapply is_trunc_is_equiv_closed_rev, { exact λa, ⋆},
|
||
apply whitehead_principle n,
|
||
{ apply is_equiv_trunc_functor_of_is_conn_fun, apply is_conn_fun_to_unit_of_is_conn},
|
||
intro a k,
|
||
apply @is_equiv_of_is_contr,
|
||
refine trivial_homotopy_group_of_is_trunc _ !zero_lt_succ,
|
||
end
|
||
|
||
definition is_contr_of_trivial_homotopy_nat (n : ℕ) (A : Type) [is_trunc n A] [is_conn 0 A]
|
||
(H : Πk a, k ≤ n → is_contr (π[k] (pointed.MK A a))) : is_contr A :=
|
||
begin
|
||
apply is_contr_of_trivial_homotopy n,
|
||
intro k a, apply @lt_ge_by_cases _ _ n k,
|
||
{ intro H', exact trivial_homotopy_group_of_is_trunc _ H'},
|
||
{ intro H', exact H k a H'}
|
||
end
|
||
|
||
definition is_contr_of_trivial_homotopy_pointed (n : ℕ₋₂) (A : Type*) [is_trunc n A]
|
||
(H : Πk, is_contr (π[k] A)) : is_contr A :=
|
||
begin
|
||
have is_conn 0 A, proof H 0 qed,
|
||
fapply is_contr_of_trivial_homotopy n A,
|
||
intro k, apply is_conn.elim -1,
|
||
cases A with A a, exact H k
|
||
end
|
||
|
||
definition is_contr_of_trivial_homotopy_nat_pointed (n : ℕ) (A : Type*) [is_trunc n A]
|
||
(H : Πk, k ≤ n → is_contr (π[k] A)) : is_contr A :=
|
||
begin
|
||
have is_conn 0 A, proof H 0 !zero_le qed,
|
||
fapply is_contr_of_trivial_homotopy_nat n A,
|
||
intro k a H', revert a, apply is_conn.elim -1,
|
||
cases A with A a, exact H k H'
|
||
end
|
||
|
||
definition ab_group_homotopy_group_of_is_conn (n : ℕ) (A : Type*) [H : is_conn 1 A] :
|
||
ab_group (π[n] A) :=
|
||
begin
|
||
have is_conn 0 A, from !is_conn_of_is_conn_succ,
|
||
cases n with n,
|
||
{ unfold [homotopy_group, ptrunc], apply ab_group_of_is_contr },
|
||
cases n with n,
|
||
{ unfold [homotopy_group, ptrunc], apply ab_group_of_is_contr },
|
||
exact ab_group_homotopy_group (n+2) A
|
||
end
|
||
|
||
definition is_contr_of_trivial_homotopy' (n : ℕ₋₂) (A : Type) [is_trunc n A] [is_conn -1 A]
|
||
(H : Πk a, is_contr (π[k] (pointed.MK A a))) : is_contr A :=
|
||
begin
|
||
assert aa : trunc -1 A,
|
||
{ apply center },
|
||
assert H3 : is_conn 0 A,
|
||
{ induction aa with a, exact H 0 a },
|
||
exact is_contr_of_trivial_homotopy n A H
|
||
end
|
||
|
||
definition is_conn_of_trivial_homotopy (n : ℕ₋₂) (m : ℕ) (A : Type) [is_trunc n A] [is_conn 0 A]
|
||
(H : Π(k : ℕ) a, k ≤ m → is_contr (π[k] (pointed.MK A a))) : is_conn m A :=
|
||
begin
|
||
apply is_contr_of_trivial_homotopy_nat m (trunc m A),
|
||
intro k a H2,
|
||
induction a with a,
|
||
apply is_trunc_equiv_closed_rev,
|
||
exact equiv_of_pequiv (homotopy_group_ptrunc_of_le H2 (pointed.MK A a)),
|
||
exact H k a H2
|
||
end
|
||
|
||
definition is_conn_of_trivial_homotopy_pointed (n : ℕ₋₂) (m : ℕ) (A : Type*) [is_trunc n A]
|
||
(H : Π(k : ℕ), k ≤ m → is_contr (π[k] A)) : is_conn m A :=
|
||
begin
|
||
have is_conn 0 A, proof H 0 !zero_le qed,
|
||
apply is_conn_of_trivial_homotopy n m A,
|
||
intro k a H2, revert a, apply is_conn.elim -1,
|
||
cases A with A a, exact H k H2
|
||
end
|
||
|
||
definition is_conn_fun_of_equiv_on_homotopy_groups.{u} (n : ℕ) {A B : Type.{u}} (f : A → B)
|
||
[is_equiv (trunc_functor 0 f)]
|
||
(H1 : Πa k, k ≤ n → is_equiv (homotopy_group_functor k (pmap_of_map f a)))
|
||
(H2 : Πa, is_surjective (homotopy_group_functor (succ n) (pmap_of_map f a))) : is_conn_fun n f :=
|
||
have H2' : Πa k, k ≤ n → is_surjective (homotopy_group_functor (succ k) (pmap_of_map f a)),
|
||
begin
|
||
intro a k H, cases H with n' H',
|
||
{ apply H2},
|
||
{ apply is_surjective_of_is_equiv, apply H1, exact succ_le_succ H'}
|
||
end,
|
||
have H3 : Πa, is_contr (ptrunc n (pfiber (pmap_of_map f a))),
|
||
begin
|
||
intro a, apply is_contr_of_trivial_homotopy_nat_pointed n,
|
||
{ intro k H, apply is_trunc_equiv_closed_rev, exact homotopy_group_ptrunc_of_le H _,
|
||
rexact @is_contr_of_is_embedding_of_is_surjective +3ℕ
|
||
(LES_of_homotopy_groups (pmap_of_map f a)) (k, 0)
|
||
(is_exact_LES_of_homotopy_groups _ _)
|
||
proof @(is_embedding_of_is_equiv _) (H1 a k H) qed
|
||
proof (H2' a k H) qed}
|
||
end,
|
||
show Πb, is_contr (trunc n (fiber f b)),
|
||
begin
|
||
intro b,
|
||
note p := right_inv (trunc_functor 0 f) (tr b), revert p,
|
||
induction (trunc_functor 0 f)⁻¹ (tr b), esimp, intro p,
|
||
induction !tr_eq_tr_equiv p with q,
|
||
rewrite -q, exact H3 a
|
||
end
|
||
|
||
end is_trunc
|
||
open is_trunc function
|
||
/- applications to infty-connected types and maps -/
|
||
namespace is_conn
|
||
|
||
definition is_conn_fun_inf_of_equiv_on_homotopy_groups.{u} {A B : Type.{u}} (f : A → B)
|
||
[is_equiv (trunc_functor 0 f)]
|
||
(H1 : Πa k, is_equiv (homotopy_group_functor k (pmap_of_map f a))) : is_conn_fun_inf f :=
|
||
begin
|
||
apply is_conn_fun_inf.mk_nat, intro n, apply is_conn_fun_of_equiv_on_homotopy_groups,
|
||
{ intro a k H, exact H1 a k},
|
||
{ intro a, apply is_surjective_of_is_equiv}
|
||
end
|
||
|
||
definition is_equiv_trunc_functor_of_is_conn_fun_inf.{u} (n : ℕ₋₂) {A B : Type.{u}} (f : A → B)
|
||
[is_conn_fun_inf f] : is_equiv (trunc_functor n f) :=
|
||
_
|
||
|
||
definition is_equiv_homotopy_group_functor_of_is_conn_fun_inf.{u} {A B : pType.{u}} (f : A →* B)
|
||
[is_conn_fun_inf f] (a : A) (k : ℕ) : is_equiv (homotopy_group_functor k f) :=
|
||
is_equiv_π_of_is_connected f (le.refl k)
|
||
|
||
end is_conn
|