lean2/library/standard/data/prod.lean

48 lines
No EOL
1.4 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura
import logic.classes.inhabited logic.connectives.eq
inductive prod (A B : Type) : Type :=
| pair : A → B → prod A B
precedence `×`:30
infixr × := prod
-- notation for n-ary tuples
notation `(` h `,` t:(foldl `,` (e r, pair r e) h) `)` := t
namespace prod
section
parameters {A B : Type}
abbreviation pr1 (p : prod A B) := prod_rec (λ x y, x) p
abbreviation pr2 (p : prod A B) := prod_rec (λ x y, y) p
theorem pr1_pair (a : A) (b : B) : pr1 (a, b) = a := refl a
theorem pr2_pair (a : A) (b : B) : pr2 (a, b) = b := refl b
-- TODO: remove prefix when we can protect it
theorem pair_destruct {P : A × B → Prop} (p : A × B) (H : ∀a b, P (a, b)) : P p :=
prod_rec H p
theorem prod_ext (p : prod A B) : pair (pr1 p) (pr2 p) = p :=
pair_destruct p (λx y, refl (x, y))
theorem pair_eq {p1 p2 : prod A B} (H1 : pr1 p1 = pr1 p2) (H2 : pr2 p1 = pr2 p2) : p1 = p2 :=
calc p1 = pair (pr1 p1) (pr2 p1) : symm (prod_ext p1)
... = pair (pr1 p2) (pr2 p1) : {H1}
... = pair (pr1 p2) (pr2 p2) : {H2}
... = p2 : prod_ext p2
theorem prod_inhabited (H1 : inhabited A) (H2 : inhabited B) : inhabited (prod A B) :=
inhabited_elim H1 (λa, inhabited_elim H2 (λb, inhabited_intro (pair a b)))
end
instance prod_inhabited
end prod