827 lines
36 KiB
Text
827 lines
36 KiB
Text
/-
|
||
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
|
||
Module: data.nat.div
|
||
Authors: Jeremy Avigad, Leonardo de Moura
|
||
|
||
Definitions and properties of div, mod, gcd, lcm, coprime. Much of the development follows
|
||
Isabelle's library.
|
||
-/
|
||
|
||
import data.nat.sub tools.fake_simplifier
|
||
open eq.ops well_founded decidable fake_simplifier prod
|
||
|
||
namespace nat
|
||
|
||
/- div and mod -/
|
||
|
||
-- auxiliary lemma used to justify div
|
||
private definition div_rec_lemma {x y : nat} (H : 0 < y ∧ y ≤ x) : x - y < x :=
|
||
and.rec_on H (λ ypos ylex, sub_lt (lt_of_lt_of_le ypos ylex) ypos)
|
||
|
||
private definition div.F (x : nat) (f : Π x₁, x₁ < x → nat → nat) (y : nat) : nat :=
|
||
if H : 0 < y ∧ y ≤ x then f (x - y) (div_rec_lemma H) y + 1 else zero
|
||
|
||
definition divide (x y : nat) := fix div.F x y
|
||
|
||
theorem divide_def (x y : nat) : divide x y = if 0 < y ∧ y ≤ x then divide (x - y) y + 1 else 0 :=
|
||
congr_fun (fix_eq div.F x) y
|
||
|
||
notation a div b := divide a b
|
||
|
||
theorem div_zero (a : ℕ) : a div 0 = 0 :=
|
||
divide_def a 0 ⬝ if_neg (!not_and_of_not_left (lt.irrefl 0))
|
||
|
||
theorem div_eq_zero_of_lt {a b : ℕ} (h : a < b) : a div b = 0 :=
|
||
divide_def a b ⬝ if_neg (!not_and_of_not_right (not_le_of_lt h))
|
||
|
||
theorem zero_div (b : ℕ) : 0 div b = 0 :=
|
||
divide_def 0 b ⬝ if_neg (λ h, and.rec_on h (λ l r, absurd (lt_of_lt_of_le l r) (lt.irrefl 0)))
|
||
|
||
theorem div_eq_succ_sub_div {a b : ℕ} (h₁ : b > 0) (h₂ : a ≥ b) : a div b = succ ((a - b) div b) :=
|
||
divide_def a b ⬝ if_pos (and.intro h₁ h₂)
|
||
|
||
theorem add_div_self_right (x : ℕ) {z : ℕ} (H : z > 0) : (x + z) div z = succ (x div z) :=
|
||
calc
|
||
(x + z) div z = if 0 < z ∧ z ≤ x + z then (x + z - z) div z + 1 else 0 : !divide_def
|
||
... = (x + z - z) div z + 1 : if_pos (and.intro H (le_add_left z x))
|
||
... = succ (x div z) : {!add_sub_cancel}
|
||
|
||
theorem add_div_self_left {x : ℕ} (z : ℕ) (H : x > 0) : (x + z) div x = succ (z div x) :=
|
||
!add.comm ▸ !add_div_self_right H
|
||
|
||
theorem add_mul_div_self_right {x y z : ℕ} (H : z > 0) : (x + y * z) div z = x div z + y :=
|
||
nat.induction_on y
|
||
(calc (x + zero * z) div z = (x + zero) div z : zero_mul
|
||
... = x div z : add_zero
|
||
... = x div z + zero : add_zero)
|
||
(take y,
|
||
assume IH : (x + y * z) div z = x div z + y, calc
|
||
(x + succ y * z) div z = (x + y * z + z) div z : by simp
|
||
... = succ ((x + y * z) div z) : !add_div_self_right H
|
||
... = x div z + succ y : by simp)
|
||
|
||
theorem add_mul_div_self_left (x z : ℕ) {y : ℕ} (H : y > 0) : (x + y * z) div y = x div y + z :=
|
||
!mul.comm ▸ add_mul_div_self_right H
|
||
|
||
theorem mul_div_cancel (m : ℕ) {n : ℕ} (H : n > 0) : m * n div n = m :=
|
||
calc
|
||
m * n div n = (0 + m * n) div n : zero_add
|
||
... = 0 div n + m : add_mul_div_self_right H
|
||
... = 0 + m : zero_div
|
||
... = m : zero_add
|
||
|
||
theorem mul_div_cancel_left {m : ℕ} (n : ℕ) (H : m > 0) : m * n div m = n :=
|
||
!mul.comm ▸ !mul_div_cancel H
|
||
|
||
private definition mod.F (x : nat) (f : Π x₁, x₁ < x → nat → nat) (y : nat) : nat :=
|
||
if H : 0 < y ∧ y ≤ x then f (x - y) (div_rec_lemma H) y else x
|
||
|
||
definition modulo (x y : nat) := fix mod.F x y
|
||
|
||
notation a mod b := modulo a b
|
||
|
||
theorem modulo_def (x y : nat) : modulo x y = if 0 < y ∧ y ≤ x then modulo (x - y) y else x :=
|
||
congr_fun (fix_eq mod.F x) y
|
||
|
||
theorem mod_zero (a : ℕ) : a mod 0 = a :=
|
||
modulo_def a 0 ⬝ if_neg (!not_and_of_not_left (lt.irrefl 0))
|
||
|
||
theorem mod_eq_of_lt {a b : ℕ} (h : a < b) : a mod b = a :=
|
||
modulo_def a b ⬝ if_neg (!not_and_of_not_right (not_le_of_lt h))
|
||
|
||
theorem zero_mod (b : ℕ) : 0 mod b = 0 :=
|
||
modulo_def 0 b ⬝ if_neg (λ h, and.rec_on h (λ l r, absurd (lt_of_lt_of_le l r) (lt.irrefl 0)))
|
||
|
||
theorem mod_eq_sub_mod {a b : ℕ} (h₁ : b > 0) (h₂ : a ≥ b) : a mod b = (a - b) mod b :=
|
||
modulo_def a b ⬝ if_pos (and.intro h₁ h₂)
|
||
|
||
theorem add_mod_left {x z : ℕ} (H : z > 0) : (x + z) mod z = x mod z :=
|
||
calc
|
||
(x + z) mod z = if 0 < z ∧ z ≤ x + z then (x + z - z) mod z else _ : modulo_def
|
||
... = (x + z - z) mod z : if_pos (and.intro H (le_add_left z x))
|
||
... = x mod z : add_sub_cancel
|
||
|
||
theorem add_mod_right {x z : ℕ} (H : x > 0) : (x + z) mod x = z mod x :=
|
||
!add.comm ▸ add_mod_left H
|
||
|
||
theorem add_mul_mod_self_right {x y z : ℕ} (H : z > 0) : (x + y * z) mod z = x mod z :=
|
||
nat.induction_on y
|
||
(calc (x + zero * z) mod z = (x + zero) mod z : zero_mul
|
||
... = x mod z : add_zero)
|
||
(take y,
|
||
assume IH : (x + y * z) mod z = x mod z,
|
||
calc
|
||
(x + succ y * z) mod z = (x + (y * z + z)) mod z : succ_mul
|
||
... = (x + y * z + z) mod z : add.assoc
|
||
... = (x + y * z) mod z : add_mod_left H
|
||
... = x mod z : IH)
|
||
|
||
theorem add_mul_mod_self_left {x y z : ℕ} (H : y > 0) : (x + y * z) mod y = x mod y :=
|
||
!mul.comm ▸ add_mul_mod_self_right H
|
||
|
||
theorem mul_mod_left {m n : ℕ} : (m * n) mod n = 0 :=
|
||
by_cases_zero_pos n (by simp)
|
||
(take n,
|
||
assume npos : n > 0,
|
||
(by simp) ▸ (@add_mul_mod_self_right 0 m _ npos))
|
||
|
||
theorem mul_mod_right {m n : ℕ} : (m * n) mod m = 0 :=
|
||
!mul.comm ▸ !mul_mod_left
|
||
|
||
theorem mod_lt {x y : ℕ} (H : y > 0) : x mod y < y :=
|
||
nat.case_strong_induction_on x
|
||
(show 0 mod y < y, from !zero_mod⁻¹ ▸ H)
|
||
(take x,
|
||
assume IH : ∀x', x' ≤ x → x' mod y < y,
|
||
show succ x mod y < y, from
|
||
by_cases -- (succ x < y)
|
||
(assume H1 : succ x < y,
|
||
have H2 : succ x mod y = succ x, from mod_eq_of_lt H1,
|
||
show succ x mod y < y, from H2⁻¹ ▸ H1)
|
||
(assume H1 : ¬ succ x < y,
|
||
have H2 : y ≤ succ x, from le_of_not_lt H1,
|
||
have H3 : succ x mod y = (succ x - y) mod y, from mod_eq_sub_mod H H2,
|
||
have H4 : succ x - y < succ x, from sub_lt !succ_pos H,
|
||
have H5 : succ x - y ≤ x, from le_of_lt_succ H4,
|
||
show succ x mod y < y, from H3⁻¹ ▸ IH _ H5))
|
||
|
||
/- properties of div and mod together -/
|
||
|
||
-- the quotient / remainder theorem
|
||
theorem eq_div_mul_add_mod {x y : ℕ} : x = x div y * y + x mod y :=
|
||
by_cases_zero_pos y
|
||
(show x = x div 0 * 0 + x mod 0, from
|
||
(calc
|
||
x div 0 * 0 + x mod 0 = 0 + x mod 0 : mul_zero
|
||
... = x mod 0 : zero_add
|
||
... = x : mod_zero)⁻¹)
|
||
(take y,
|
||
assume H : y > 0,
|
||
show x = x div y * y + x mod y, from
|
||
nat.case_strong_induction_on x
|
||
(show 0 = (0 div y) * y + 0 mod y, by simp)
|
||
(take x,
|
||
assume IH : ∀x', x' ≤ x → x' = x' div y * y + x' mod y,
|
||
show succ x = succ x div y * y + succ x mod y, from
|
||
by_cases -- (succ x < y)
|
||
(assume H1 : succ x < y,
|
||
have H2 : succ x div y = 0, from div_eq_zero_of_lt H1,
|
||
have H3 : succ x mod y = succ x, from mod_eq_of_lt H1,
|
||
by simp)
|
||
(assume H1 : ¬ succ x < y,
|
||
have H2 : y ≤ succ x, from le_of_not_lt H1,
|
||
have H3 : succ x div y = succ ((succ x - y) div y), from div_eq_succ_sub_div H H2,
|
||
have H4 : succ x mod y = (succ x - y) mod y, from mod_eq_sub_mod H H2,
|
||
have H5 : succ x - y < succ x, from sub_lt !succ_pos H,
|
||
have H6 : succ x - y ≤ x, from le_of_lt_succ H5,
|
||
(calc
|
||
succ x div y * y + succ x mod y =
|
||
succ ((succ x - y) div y) * y + succ x mod y : H3
|
||
... = ((succ x - y) div y) * y + y + succ x mod y : succ_mul
|
||
... = ((succ x - y) div y) * y + y + (succ x - y) mod y : H4
|
||
... = ((succ x - y) div y) * y + (succ x - y) mod y + y : add.right_comm
|
||
... = succ x - y + y : {!(IH _ H6)⁻¹}
|
||
... = succ x : sub_add_cancel H2)⁻¹)))
|
||
|
||
theorem mod_le {x y : ℕ} : x mod y ≤ x :=
|
||
eq_div_mul_add_mod⁻¹ ▸ !le_add_left
|
||
|
||
theorem eq_remainder {y : ℕ} (H : y > 0) {q1 r1 q2 r2 : ℕ} (H1 : r1 < y) (H2 : r2 < y)
|
||
(H3 : q1 * y + r1 = q2 * y + r2) : r1 = r2 :=
|
||
calc
|
||
r1 = r1 mod y : by simp
|
||
... = (r1 + q1 * y) mod y : (add_mul_mod_self_right H)⁻¹
|
||
... = (q1 * y + r1) mod y : add.comm
|
||
... = (r2 + q2 * y) mod y : by simp
|
||
... = r2 mod y : add_mul_mod_self_right H
|
||
... = r2 : by simp
|
||
|
||
theorem eq_quotient {y : ℕ} (H : y > 0) {q1 r1 q2 r2 : ℕ} (H1 : r1 < y) (H2 : r2 < y)
|
||
(H3 : q1 * y + r1 = q2 * y + r2) : q1 = q2 :=
|
||
have H4 : q1 * y + r2 = q2 * y + r2, from (eq_remainder H H1 H2 H3) ▸ H3,
|
||
have H5 : q1 * y = q2 * y, from add.cancel_right H4,
|
||
have H6 : y > 0, from lt_of_le_of_lt !zero_le H1,
|
||
show q1 = q2, from eq_of_mul_eq_mul_right H6 H5
|
||
|
||
theorem mul_div_mul_left {z : ℕ} (x y : ℕ) (zpos : z > 0) : (z * x) div (z * y) = x div y :=
|
||
by_cases -- (y = 0)
|
||
(assume H : y = 0, by simp)
|
||
(assume H : y ≠ 0,
|
||
have ypos : y > 0, from pos_of_ne_zero H,
|
||
have zypos : z * y > 0, from mul_pos zpos ypos,
|
||
have H1 : (z * x) mod (z * y) < z * y, from mod_lt zypos,
|
||
have H2 : z * (x mod y) < z * y, from mul_lt_mul_of_pos_left (mod_lt ypos) zpos,
|
||
eq_quotient zypos H1 H2
|
||
(calc
|
||
((z * x) div (z * y)) * (z * y) + (z * x) mod (z * y) = z * x : eq_div_mul_add_mod
|
||
... = z * (x div y * y + x mod y) : eq_div_mul_add_mod
|
||
... = z * (x div y * y) + z * (x mod y) : mul.left_distrib
|
||
... = (x div y) * (z * y) + z * (x mod y) : mul.left_comm))
|
||
|
||
theorem mul_div_mul_right {x z y : ℕ} (zpos : z > 0) : (x * z) div (y * z) = x div y :=
|
||
!mul.comm ▸ !mul.comm ▸ !mul_div_mul_left zpos
|
||
|
||
theorem mul_mod_mul_left (z x y : ℕ) : (z * x) mod (z * y) = z * (x mod y) :=
|
||
or.elim (eq_zero_or_pos z)
|
||
(assume H : z = 0,
|
||
calc
|
||
(z * x) mod (z * y) = (0 * x) mod (z * y) : H
|
||
... = 0 mod (z * y) : zero_mul
|
||
... = 0 : zero_mod
|
||
... = 0 * (x mod y) : zero_mul
|
||
... = z * (x mod y) : H)
|
||
(assume zpos : z > 0,
|
||
or.elim (eq_zero_or_pos y)
|
||
(assume H : y = 0, by simp)
|
||
(assume ypos : y > 0,
|
||
have zypos : z * y > 0, from mul_pos zpos ypos,
|
||
have H1 : (z * x) mod (z * y) < z * y, from mod_lt zypos,
|
||
have H2 : z * (x mod y) < z * y, from mul_lt_mul_of_pos_left (mod_lt ypos) zpos,
|
||
eq_remainder zypos H1 H2
|
||
(calc
|
||
((z * x) div (z * y)) * (z * y) + (z * x) mod (z * y) = z * x : eq_div_mul_add_mod
|
||
... = z * (x div y * y + x mod y) : eq_div_mul_add_mod
|
||
... = z * (x div y * y) + z * (x mod y) : mul.left_distrib
|
||
... = (x div y) * (z * y) + z * (x mod y) : mul.left_comm)))
|
||
|
||
theorem mul_mod_mul_right (x z y : ℕ) : (x * z) mod (y * z) = (x mod y) * z :=
|
||
mul.comm z x ▸ mul.comm z y ▸ !mul.comm ▸ !mul_mod_mul_left
|
||
|
||
theorem mod_one (n : ℕ) : n mod 1 = 0 :=
|
||
have H1 : n mod 1 < 1, from mod_lt !succ_pos,
|
||
eq_zero_of_le_zero (le_of_lt_succ H1)
|
||
|
||
theorem mod_self (n : ℕ) : n mod n = 0 :=
|
||
nat.cases_on n (by simp)
|
||
(take n,
|
||
have H : (succ n * 1) mod (succ n * 1) = succ n * (1 mod 1),
|
||
from !mul_mod_mul_left,
|
||
(by simp) ▸ H)
|
||
|
||
theorem div_one (n : ℕ) : n div 1 = n :=
|
||
have H : n div 1 * 1 + n mod 1 = n, from eq_div_mul_add_mod⁻¹,
|
||
(by simp) ▸ H
|
||
|
||
theorem div_self {n : ℕ} (H : n > 0) : n div n = 1 :=
|
||
have H1 : (n * 1) div (n * 1) = 1 div 1, from !mul_div_mul_left H,
|
||
(by simp) ▸ H1
|
||
|
||
theorem div_mul_cancel_of_mod_eq_zero {m n : ℕ} (H : m mod n = 0) : m div n * n = m :=
|
||
(calc
|
||
m = m div n * n + m mod n : eq_div_mul_add_mod
|
||
... = m div n * n + 0 : H
|
||
... = m div n * n : !add_zero)⁻¹
|
||
|
||
theorem mul_div_cancel_of_mod_eq_zero {m n : ℕ} (H : m mod n = 0) : n * (m div n) = m :=
|
||
!mul.comm ▸ div_mul_cancel_of_mod_eq_zero H
|
||
|
||
theorem div_lt_of_lt_mul {m n k : ℕ} (H : m < k * n) : m div k < n :=
|
||
lt_of_mul_lt_mul_right (calc
|
||
m div k * k ≤ m div k * k + m mod k : le_add_right
|
||
... = m : eq_div_mul_add_mod
|
||
... < k * n : H
|
||
... = n * k : nat.mul.comm)
|
||
|
||
theorem div_le_of_le_mul {m n k : ℕ} (H : m ≤ k * n) : m div k ≤ n :=
|
||
or.elim (eq_zero_or_pos k)
|
||
(assume H1 : k = 0,
|
||
calc
|
||
m div k = m div 0 : H1
|
||
... = 0 : div_zero
|
||
... ≤ n : zero_le)
|
||
(assume H1 : k > 0,
|
||
le_of_mul_le_mul_right (calc
|
||
m div k * k ≤ m div k * k + m mod k : le_add_right
|
||
... = m : eq_div_mul_add_mod
|
||
... ≤ k * n : H
|
||
... = n * k : nat.mul.comm) H1)
|
||
|
||
theorem mul_sub_div_of_lt {m n k : ℕ} (H : k < m * n) :
|
||
(m * n - (k + 1)) div m = n - k div m - 1 :=
|
||
have H1 : k div m < n, from div_lt_of_lt_mul H,
|
||
have H2 : n - k div m ≥ 1, from
|
||
le_sub_of_add_le (calc
|
||
1 + k div m = succ (k div m) : add.comm
|
||
... ≤ n : succ_le_of_lt H1),
|
||
assert H3 : n - k div m = n - k div m - 1 + 1, from (sub_add_cancel H2)⁻¹,
|
||
assert H4 : m > 0, from pos_of_ne_zero (assume H': m = 0, not_lt_zero _ (!zero_mul ▸ H' ▸ H)),
|
||
have H5 : k mod m + 1 ≤ m, from succ_le_of_lt (mod_lt H4),
|
||
assert H6 : m - (k mod m + 1) < m, from sub_lt_self H4 !succ_pos,
|
||
calc
|
||
(m * n - (k + 1)) div m = (m * n - (k div m * m + k mod m + 1)) div m : eq_div_mul_add_mod
|
||
... = (m * n - k div m * m - (k mod m + 1)) div m : by rewrite [*sub_sub]
|
||
... = ((n - k div m) * m - (k mod m + 1)) div m :
|
||
by rewrite [(mul.comm m), mul_sub_right_distrib]
|
||
... = ((n - k div m - 1) * m + m - (k mod m + 1)) div m :
|
||
by rewrite [H3 at {1}, mul.right_distrib, nat.one_mul]
|
||
... = ((n - k div m - 1) * m + (m - (k mod m + 1))) div m : {add_sub_assoc H5 _}
|
||
... = (m - (k mod m + 1)) div m + (n - k div m - 1) :
|
||
by rewrite [add.comm, (add_mul_div_self_right H4)]
|
||
... = n - k div m - 1 :
|
||
by rewrite [(div_eq_zero_of_lt H6), zero_add]
|
||
|
||
/- divides -/
|
||
|
||
theorem dvd_of_mod_eq_zero {m n : ℕ} (H : n mod m = 0) : (m | n) :=
|
||
dvd.intro (!mul.comm ▸ div_mul_cancel_of_mod_eq_zero H)
|
||
|
||
theorem mod_eq_zero_of_dvd {m n : ℕ} (H : (m | n)) : n mod m = 0 :=
|
||
dvd.elim H
|
||
(take z,
|
||
assume H1 : n = m * z,
|
||
H1⁻¹ ▸ !mul_mod_right)
|
||
|
||
theorem dvd_iff_mod_eq_zero (m n : ℕ) : (m | n) ↔ n mod m = 0 :=
|
||
iff.intro mod_eq_zero_of_dvd dvd_of_mod_eq_zero
|
||
|
||
definition dvd.decidable_rel [instance] : decidable_rel dvd :=
|
||
take m n, decidable_of_decidable_of_iff _ (iff.symm !dvd_iff_mod_eq_zero)
|
||
|
||
theorem div_mul_cancel {m n : ℕ} (H : (n | m)) : m div n * n = m :=
|
||
div_mul_cancel_of_mod_eq_zero (mod_eq_zero_of_dvd H)
|
||
|
||
theorem mul_div_cancel' {m n : ℕ} (H : (n | m)) : n * (m div n) = m :=
|
||
!mul.comm ▸ div_mul_cancel H
|
||
|
||
theorem eq_mul_of_div_eq {m n k : ℕ} (H1 : (m | n)) (H2 : n div m = k) : n = m * k :=
|
||
eq.symm (calc
|
||
m * k = m * (n div m) : H2
|
||
... = n : mul_div_cancel' H1)
|
||
|
||
theorem eq_div_of_mul_eq {m n k : ℕ} (H1 : k > 0) (H2 : n * k = m) : n = m div k :=
|
||
calc
|
||
n = n * k div k : mul_div_cancel _ H1
|
||
... = m div k : H2
|
||
|
||
theorem dvd_of_dvd_add_left {m n₁ n₂ : ℕ} (H₁ : (m | n₁ + n₂)) (H₂ : (m | n₁)) : (m | n₂) :=
|
||
obtain (c₁ : nat) (Hc₁ : n₁ + n₂ = m * c₁), from H₁,
|
||
obtain (c₂ : nat) (Hc₂ : n₁ = m * c₂), from H₂,
|
||
have aux : m * (c₁ - c₂) = n₂, from calc
|
||
m * (c₁ - c₂) = m * c₁ - m * c₂ : mul_sub_left_distrib
|
||
... = n₁ + n₂ - m * c₂ : Hc₁
|
||
... = n₁ + n₂ - n₁ : Hc₂
|
||
... = n₂ : add_sub_cancel_left,
|
||
dvd.intro aux
|
||
|
||
theorem dvd_of_dvd_add_right {m n1 n2 : ℕ} (H : (m | (n1 + n2))) : (m | n2) → (m | n1) :=
|
||
dvd_of_dvd_add_left (!add.comm ▸ H)
|
||
|
||
theorem dvd_sub {m n1 n2 : ℕ} (H1 : (m | n1)) (H2 : (m | n2)) : (m | n1 - n2) :=
|
||
by_cases
|
||
(assume H3 : n1 ≥ n2,
|
||
have H4 : n1 = n1 - n2 + n2, from (sub_add_cancel H3)⁻¹,
|
||
show (m | n1 - n2), from dvd_of_dvd_add_right (H4 ▸ H1) H2)
|
||
(assume H3 : ¬ (n1 ≥ n2),
|
||
have H4 : n1 - n2 = 0, from sub_eq_zero_of_le (le_of_lt (lt_of_not_le H3)),
|
||
show (m | n1 - n2), from H4⁻¹ ▸ dvd_zero _)
|
||
|
||
theorem dvd.antisymm {m n : ℕ} : (m | n) → (n | m) → m = n :=
|
||
by_cases_zero_pos n
|
||
(assume H1, assume H2 : (0 | m), eq_zero_of_zero_dvd H2)
|
||
(take n,
|
||
assume Hpos : n > 0,
|
||
assume H1 : (m | n),
|
||
assume H2 : (n | m),
|
||
obtain k (Hk : n = m * k), from exists_eq_mul_right_of_dvd H1,
|
||
obtain l (Hl : m = n * l), from exists_eq_mul_right_of_dvd H2,
|
||
have H3 : n * (l * k) = n, from !mul.assoc ▸ Hl ▸ Hk⁻¹,
|
||
have H4 : l * k = 1, from eq_one_of_mul_eq_self_right Hpos H3,
|
||
have H5 : k = 1, from eq_one_of_mul_eq_one_left H4,
|
||
show m = n, from (mul_one m)⁻¹ ⬝ (H5 ▸ Hk⁻¹))
|
||
|
||
theorem mul_div_assoc (m : ℕ) {n k : ℕ} (H : (k | n)) : m * n div k = m * (n div k) :=
|
||
or.elim (eq_zero_or_pos k)
|
||
(assume H1 : k = 0,
|
||
calc
|
||
m * n div k = m * n div 0 : H1
|
||
... = 0 : div_zero
|
||
... = m * 0 : mul_zero m
|
||
... = m * (n div 0) : div_zero
|
||
... = m * (n div k) : H1)
|
||
(assume H1 : k > 0,
|
||
have H2 : n = n div k * k, from (div_mul_cancel H)⁻¹,
|
||
calc
|
||
m * n div k = m * (n div k * k) div k : H2
|
||
... = m * (n div k) * k div k : mul.assoc
|
||
... = m * (n div k) : mul_div_cancel _ H1)
|
||
|
||
theorem dvd_of_mul_dvd_mul_left {m n k : ℕ} (kpos : k > 0) (H : (k * m | k * n)) : (m | n) :=
|
||
dvd.elim H
|
||
(take l,
|
||
assume H1 : k * n = k * m * l,
|
||
have H2 : n = m * l, from eq_of_mul_eq_mul_left kpos (H1 ⬝ !mul.assoc),
|
||
dvd.intro H2⁻¹)
|
||
|
||
theorem dvd_of_mul_dvd_mul_right {m n k : ℕ} (kpos : k > 0) (H : (m * k | n * k)) : (m | n) :=
|
||
dvd_of_mul_dvd_mul_left kpos (!mul.comm ▸ !mul.comm ▸ H)
|
||
|
||
theorem div_dvd_div {k m n : ℕ} (H1 : (k | m)) (H2 : (m | n)) : (m div k | n div k) :=
|
||
have H3 : m = m div k * k, from (div_mul_cancel H1)⁻¹,
|
||
have H4 : n = n div k * k, from (div_mul_cancel (dvd.trans H1 H2))⁻¹,
|
||
or.elim (eq_zero_or_pos k)
|
||
(assume H5 : k = 0,
|
||
have H6: n div k = 0, from (congr_arg _ H5 ⬝ !div_zero),
|
||
H6⁻¹ ▸ !dvd_zero)
|
||
(assume H5 : k > 0,
|
||
dvd_of_mul_dvd_mul_right H5 (H3 ▸ H4 ▸ H2))
|
||
|
||
/- gcd -/
|
||
|
||
private definition pair_nat.lt : nat × nat → nat × nat → Prop := measure pr₂
|
||
private definition pair_nat.lt.wf : well_founded pair_nat.lt :=
|
||
intro_k (measure.wf pr₂) 20 -- we use intro_k to be able to execute gcd efficiently in the kernel
|
||
|
||
local attribute pair_nat.lt.wf [instance] -- instance will not be saved in .olean
|
||
local infixl `≺`:50 := pair_nat.lt
|
||
|
||
private definition gcd.lt.dec (x y₁ : nat) : (succ y₁, x mod succ y₁) ≺ (x, succ y₁) :=
|
||
mod_lt (succ_pos y₁)
|
||
|
||
definition gcd.F (p₁ : nat × nat) : (Π p₂ : nat × nat, p₂ ≺ p₁ → nat) → nat :=
|
||
prod.cases_on p₁ (λx y, nat.cases_on y
|
||
(λ f, x)
|
||
(λ y₁ (f : Πp₂, p₂ ≺ (x, succ y₁) → nat), f (succ y₁, x mod succ y₁) !gcd.lt.dec))
|
||
|
||
definition gcd (x y : nat) := fix gcd.F (pair x y)
|
||
|
||
theorem gcd_zero_right (x : nat) : gcd x 0 = x :=
|
||
well_founded.fix_eq gcd.F (x, 0)
|
||
|
||
theorem gcd_succ (x y : nat) : gcd x (succ y) = gcd (succ y) (x mod succ y) :=
|
||
well_founded.fix_eq gcd.F (x, succ y)
|
||
|
||
theorem gcd_one_right (n : ℕ) : gcd n 1 = 1 :=
|
||
calc gcd n 1 = gcd 1 (n mod 1) : gcd_succ n zero
|
||
... = gcd 1 0 : mod_one
|
||
... = 1 : gcd_zero_right
|
||
|
||
theorem gcd_def (x y : ℕ) : gcd x y = if y = 0 then x else gcd y (x mod y) :=
|
||
nat.cases_on y
|
||
(calc gcd x 0 = x : gcd_zero_right x
|
||
... = if 0 = 0 then x else gcd zero (x mod zero) : (if_pos rfl)⁻¹)
|
||
(λy₁, calc
|
||
gcd x (succ y₁) = gcd (succ y₁) (x mod succ y₁) : gcd_succ x y₁
|
||
... = if succ y₁ = 0 then x else gcd (succ y₁) (x mod succ y₁) : (if_neg (succ_ne_zero y₁))⁻¹)
|
||
|
||
theorem gcd_self (n : ℕ) : gcd n n = n :=
|
||
nat.cases_on n
|
||
rfl
|
||
(λn₁, calc
|
||
gcd (succ n₁) (succ n₁) = gcd (succ n₁) (succ n₁ mod succ n₁) : gcd_succ (succ n₁) n₁
|
||
... = gcd (succ n₁) 0 : mod_self (succ n₁)
|
||
... = succ n₁ : gcd_zero_right)
|
||
|
||
theorem gcd_zero_left (n : nat) : gcd 0 n = n :=
|
||
nat.cases_on n
|
||
rfl
|
||
(λ n₁, calc
|
||
gcd 0 (succ n₁) = gcd (succ n₁) (0 mod succ n₁) : gcd_succ
|
||
... = gcd (succ n₁) 0 : zero_mod
|
||
... = (succ n₁) : gcd_zero_right)
|
||
|
||
theorem gcd_rec_of_pos (m : ℕ) {n : ℕ} (H : n > 0) : gcd m n = gcd n (m mod n) :=
|
||
gcd_def m n ⬝ if_neg (ne_zero_of_pos H)
|
||
|
||
theorem gcd_rec (m n : ℕ) : gcd m n = gcd n (m mod n) :=
|
||
by_cases_zero_pos n
|
||
(calc
|
||
gcd m 0 = m : gcd_zero_right
|
||
... = gcd 0 m : gcd_zero_left
|
||
... = gcd 0 (m mod 0) : mod_zero)
|
||
(take n, assume H : 0 < n, gcd_rec_of_pos m H)
|
||
|
||
theorem gcd.induction {P : ℕ → ℕ → Prop}
|
||
(m n : ℕ)
|
||
(H0 : ∀m, P m 0)
|
||
(H1 : ∀m n, 0 < n → P n (m mod n) → P m n) :
|
||
P m n :=
|
||
let Q : nat × nat → Prop := λ p : nat × nat, P (pr₁ p) (pr₂ p) in
|
||
have aux : Q (m, n), from
|
||
well_founded.induction (m, n) (λp, prod.cases_on p
|
||
(λm n, nat.cases_on n
|
||
(λ ih, show P (pr₁ (m, 0)) (pr₂ (m, 0)), from H0 m)
|
||
(λ n₁ (ih : ∀p₂, p₂ ≺ (m, succ n₁) → P (pr₁ p₂) (pr₂ p₂)),
|
||
have hlt₁ : 0 < succ n₁, from succ_pos n₁,
|
||
have hlt₂ : (succ n₁, m mod succ n₁) ≺ (m, succ n₁), from gcd.lt.dec _ _,
|
||
have hp : P (succ n₁) (m mod succ n₁), from ih _ hlt₂,
|
||
show P m (succ n₁), from
|
||
H1 m (succ n₁) hlt₁ hp))),
|
||
aux
|
||
|
||
theorem gcd_dvd (m n : ℕ) : (gcd m n | m) ∧ (gcd m n | n) :=
|
||
gcd.induction m n
|
||
(take m,
|
||
show (gcd m 0 | m) ∧ (gcd m 0 | 0), by simp)
|
||
(take m n,
|
||
assume npos : 0 < n,
|
||
assume IH : (gcd n (m mod n) | n) ∧ (gcd n (m mod n) | (m mod n)),
|
||
have H : (gcd n (m mod n) | (m div n * n + m mod n)), from
|
||
dvd_add (dvd.trans (and.elim_left IH) !dvd_mul_left) (and.elim_right IH),
|
||
have H1 : (gcd n (m mod n) | m), from eq_div_mul_add_mod⁻¹ ▸ H,
|
||
have gcd_eq : gcd n (m mod n) = gcd m n, from !gcd_rec⁻¹,
|
||
show (gcd m n | m) ∧ (gcd m n | n), from gcd_eq ▸ (and.intro H1 (and.elim_left IH)))
|
||
|
||
theorem gcd_dvd_left (m n : ℕ) : (gcd m n | m) := and.elim_left !gcd_dvd
|
||
|
||
theorem gcd_dvd_right (m n : ℕ) : (gcd m n | n) := and.elim_right !gcd_dvd
|
||
|
||
theorem dvd_gcd {m n k : ℕ} : (k | m) → (k | n) → (k | gcd m n) :=
|
||
gcd.induction m n
|
||
(take m, assume (h₁ : (k | m)) (h₂ : (k | 0)),
|
||
show (k | gcd m 0), from !gcd_zero_right⁻¹ ▸ h₁)
|
||
(take m n,
|
||
assume npos : n > 0,
|
||
assume IH : (k | n) → (k | m mod n) → (k | gcd n (m mod n)),
|
||
assume H1 : (k | m),
|
||
assume H2 : (k | n),
|
||
have H3 : (k | m div n * n + m mod n), from eq_div_mul_add_mod ▸ H1,
|
||
have H4 : (k | m mod n), from nat.dvd_of_dvd_add_left H3 (dvd.trans H2 (by simp)),
|
||
have gcd_eq : gcd n (m mod n) = gcd m n, from !gcd_rec⁻¹,
|
||
show (k | gcd m n), from gcd_eq ▸ IH H2 H4)
|
||
|
||
theorem gcd.comm (m n : ℕ) : gcd m n = gcd n m :=
|
||
dvd.antisymm
|
||
(dvd_gcd !gcd_dvd_right !gcd_dvd_left)
|
||
(dvd_gcd !gcd_dvd_right !gcd_dvd_left)
|
||
|
||
theorem gcd.assoc (m n k : ℕ) : gcd (gcd m n) k = gcd m (gcd n k) :=
|
||
dvd.antisymm
|
||
(dvd_gcd
|
||
(dvd.trans !gcd_dvd_left !gcd_dvd_left)
|
||
(dvd_gcd (dvd.trans !gcd_dvd_left !gcd_dvd_right) !gcd_dvd_right))
|
||
(dvd_gcd
|
||
(dvd_gcd !gcd_dvd_left (dvd.trans !gcd_dvd_right !gcd_dvd_left))
|
||
(dvd.trans !gcd_dvd_right !gcd_dvd_right))
|
||
|
||
theorem gcd_one_left (m : ℕ) : gcd 1 m = 1 :=
|
||
!gcd.comm ⬝ !gcd_one_right
|
||
|
||
theorem gcd_mul_left (m n k : ℕ) : gcd (m * n) (m * k) = m * gcd n k :=
|
||
gcd.induction n k
|
||
(take n,
|
||
calc
|
||
gcd (m * n) (m * 0) = gcd (m * n) 0 : mul_zero
|
||
... = m * n : gcd_zero_right
|
||
... = m * gcd n 0 : gcd_zero_right)
|
||
(take n k,
|
||
assume H : 0 < k,
|
||
assume IH : gcd (m * k) (m * (n mod k)) = m * gcd k (n mod k),
|
||
calc
|
||
gcd (m * n) (m * k) = gcd (m * k) (m * n mod (m * k)) : !gcd_rec
|
||
... = gcd (m * k) (m * (n mod k)) : mul_mod_mul_left
|
||
... = m * gcd k (n mod k) : IH
|
||
... = m * gcd n k : !gcd_rec)
|
||
|
||
theorem gcd_mul_right (m n k : ℕ) : gcd (m * n) (k * n) = gcd m k * n :=
|
||
calc
|
||
gcd (m * n) (k * n) = gcd (n * m) (k * n) : mul.comm
|
||
... = gcd (n * m) (n * k) : mul.comm
|
||
... = n * gcd m k : gcd_mul_left
|
||
... = gcd m k * n : mul.comm
|
||
|
||
theorem gcd_pos_of_pos_left {m : ℕ} (n : ℕ) (mpos : m > 0) : gcd m n > 0 :=
|
||
pos_of_dvd_of_pos !gcd_dvd_left mpos
|
||
|
||
theorem gcd_pos_of_pos_right (m : ℕ) {n : ℕ} (npos : n > 0) : gcd m n > 0 :=
|
||
pos_of_dvd_of_pos !gcd_dvd_right npos
|
||
|
||
theorem eq_zero_of_gcd_eq_zero_left {m n : ℕ} (H : gcd m n = 0) : m = 0 :=
|
||
or.elim (eq_zero_or_pos m)
|
||
(assume H1, H1)
|
||
(assume H1 : m > 0, absurd H⁻¹ (ne_of_lt (!gcd_pos_of_pos_left H1)))
|
||
|
||
theorem eq_zero_of_gcd_eq_zero_right {m n : ℕ} (H : gcd m n = 0) : n = 0 :=
|
||
eq_zero_of_gcd_eq_zero_left (!gcd.comm ▸ H)
|
||
|
||
theorem gcd_div {m n k : ℕ} (H1 : (k | m)) (H2 : (k | n)) : gcd (m div k) (n div k) = gcd m n div k :=
|
||
or.elim (eq_zero_or_pos k)
|
||
(assume H3 : k = 0,
|
||
calc
|
||
gcd (m div k) (n div k) = gcd (m div 0) (n div k) : H3
|
||
... = gcd 0 (n div k) : div_zero
|
||
... = n div k : gcd_zero_left
|
||
... = n div 0 : H3
|
||
... = 0 : div_zero
|
||
... = gcd m n div 0 : div_zero
|
||
... = gcd m n div k : H3)
|
||
(assume H3 : k > 0,
|
||
eq_div_of_mul_eq H3
|
||
(calc
|
||
gcd (m div k) (n div k) * k = gcd (m div k * k) (n div k * k) : gcd_mul_right
|
||
... = gcd m (n div k * k) : div_mul_cancel H1
|
||
... = gcd m n : div_mul_cancel H2))
|
||
|
||
theorem gcd_dvd_gcd_mul_left (m n k : ℕ) : (gcd m n | gcd (k * m) n) :=
|
||
dvd_gcd (dvd.trans !gcd_dvd_left !dvd_mul_left) !gcd_dvd_right
|
||
|
||
theorem gcd_dvd_gcd_mul_right (m n k : ℕ) : (gcd m n | gcd (m * k) n) :=
|
||
!mul.comm ▸ !gcd_dvd_gcd_mul_left
|
||
|
||
theorem gcd_dvd_gcd_mul_left_right (m n k : ℕ) : (gcd m n | gcd m (k * n)) :=
|
||
dvd_gcd !gcd_dvd_left (dvd.trans !gcd_dvd_right !dvd_mul_left)
|
||
|
||
theorem gcd_dvd_gcd_mul_right_right (m n k : ℕ) : (gcd m n | gcd m (n * k)) :=
|
||
!mul.comm ▸ !gcd_dvd_gcd_mul_left_right
|
||
|
||
/- lcm -/
|
||
|
||
definition lcm (m n : ℕ) : ℕ := m * n div (gcd m n)
|
||
|
||
theorem lcm.comm (m n : ℕ) : lcm m n = lcm n m :=
|
||
calc
|
||
lcm m n = m * n div gcd m n : rfl
|
||
... = n * m div gcd m n : mul.comm
|
||
... = n * m div gcd n m : gcd.comm
|
||
... = lcm n m : rfl
|
||
|
||
theorem lcm_zero_left (m : ℕ) : lcm 0 m = 0 :=
|
||
calc
|
||
lcm 0 m = 0 * m div gcd 0 m : rfl
|
||
... = 0 div gcd 0 m : zero_mul
|
||
... = 0 : zero_div
|
||
|
||
theorem lcm_zero_right (m : ℕ) : lcm m 0 = 0 := !lcm.comm ▸ !lcm_zero_left
|
||
|
||
theorem lcm_one_left (m : ℕ) : lcm 1 m = m :=
|
||
calc
|
||
lcm 1 m = 1 * m div gcd 1 m : rfl
|
||
... = m div gcd 1 m : one_mul
|
||
... = m div 1 : gcd_one_left
|
||
... = m : div_one
|
||
|
||
theorem lcm_one_right (m : ℕ) : lcm m 1 = m := !lcm.comm ▸ !lcm_one_left
|
||
|
||
theorem lcm_self (m : ℕ) : lcm m m = m :=
|
||
have H : m * m div m = m, from
|
||
by_cases_zero_pos m !div_zero (take m, assume H1 : m > 0, !mul_div_cancel H1),
|
||
calc
|
||
lcm m m = m * m div gcd m m : rfl
|
||
... = m * m div m : gcd_self
|
||
... = m : H
|
||
|
||
theorem dvd_lcm_left (m n : ℕ) : (m | lcm m n) :=
|
||
have H : lcm m n = m * (n div gcd m n), from mul_div_assoc _ !gcd_dvd_right,
|
||
dvd.intro H⁻¹
|
||
|
||
theorem dvd_lcm_right (m n : ℕ) : (n | lcm m n) :=
|
||
!lcm.comm ▸ !dvd_lcm_left
|
||
|
||
theorem gcd_mul_lcm (m n : ℕ) : gcd m n * lcm m n = m * n :=
|
||
eq.symm (eq_mul_of_div_eq (dvd.trans !gcd_dvd_left !dvd_mul_right) rfl)
|
||
|
||
theorem lcm_dvd {m n k : ℕ} (H1 : (m | k)) (H2 : (n | k)) : (lcm m n | k) :=
|
||
or.elim (eq_zero_or_pos k)
|
||
(assume kzero : k = 0, !kzero⁻¹ ▸ !dvd_zero)
|
||
(assume kpos : k > 0,
|
||
have mpos : m > 0, from pos_of_dvd_of_pos H1 kpos,
|
||
have npos : n > 0, from pos_of_dvd_of_pos H2 kpos,
|
||
have gcd_pos : gcd m n > 0, from !gcd_pos_of_pos_left mpos,
|
||
obtain p (km : k = m * p), from exists_eq_mul_right_of_dvd H1,
|
||
obtain q (kn : k = n * q), from exists_eq_mul_right_of_dvd H2,
|
||
have ppos : p > 0, from pos_of_mul_pos_left (km ▸ kpos),
|
||
have qpos : q > 0, from pos_of_mul_pos_left (kn ▸ kpos),
|
||
have H3 : p * q * (m * n * gcd p q) = p * q * (gcd m n * k), from
|
||
calc
|
||
p * q * (m * n * gcd p q) = p * (q * (m * n * gcd p q)) : mul.assoc
|
||
... = p * (q * (m * (n * gcd p q))) : mul.assoc
|
||
... = p * (m * (q * (n * gcd p q))) : mul.left_comm
|
||
... = p * m * (q * (n * gcd p q)) : mul.assoc
|
||
... = p * m * (q * n * gcd p q) : mul.assoc
|
||
... = m * p * (q * n * gcd p q) : mul.comm
|
||
... = k * (q * n * gcd p q) : km
|
||
... = k * (n * q * gcd p q) : mul.comm
|
||
... = k * (k * gcd p q) : kn
|
||
... = k * gcd (k * p) (k * q) : gcd_mul_left
|
||
... = k * gcd (n * q * p) (k * q) : kn
|
||
... = k * gcd (n * q * p) (m * p * q) : km
|
||
... = k * gcd (n * (q * p)) (m * p * q) : mul.assoc
|
||
... = k * gcd (n * (q * p)) (m * (p * q)) : mul.assoc
|
||
... = k * gcd (n * (p * q)) (m * (p * q)) : mul.comm
|
||
... = k * (gcd n m * (p * q)) : gcd_mul_right
|
||
... = gcd n m * (p * q) * k : mul.comm
|
||
... = p * q * gcd n m * k : mul.comm
|
||
... = p * q * (gcd n m * k) : mul.assoc
|
||
... = p * q * (gcd m n * k) : gcd.comm,
|
||
have H4 : m * n * gcd p q = gcd m n * k,
|
||
from !eq_of_mul_eq_mul_left (mul_pos ppos qpos) H3,
|
||
have H5 : gcd m n * (lcm m n * gcd p q) = gcd m n * k,
|
||
from !mul.assoc ▸ !gcd_mul_lcm⁻¹ ▸ H4,
|
||
have H6 : lcm m n * gcd p q = k,
|
||
from !eq_of_mul_eq_mul_left gcd_pos H5,
|
||
dvd.intro H6)
|
||
|
||
theorem lcm_assoc (m n k : ℕ) : lcm (lcm m n) k = lcm m (lcm n k) :=
|
||
dvd.antisymm
|
||
(lcm_dvd
|
||
(lcm_dvd !dvd_lcm_left (dvd.trans !dvd_lcm_left !dvd_lcm_right))
|
||
(dvd.trans !dvd_lcm_right !dvd_lcm_right))
|
||
(lcm_dvd
|
||
(dvd.trans !dvd_lcm_left !dvd_lcm_left)
|
||
(lcm_dvd (dvd.trans !dvd_lcm_right !dvd_lcm_left) !dvd_lcm_right))
|
||
|
||
/- coprime -/
|
||
|
||
definition coprime [reducible] (m n : ℕ) : Prop := gcd m n = 1
|
||
|
||
theorem coprime_swap {m n : ℕ} (H : coprime n m) : coprime m n :=
|
||
!gcd.comm ▸ H
|
||
|
||
theorem dvd_of_coprime_of_dvd_mul_right {m n k : ℕ} (H1 : coprime k n) (H2 : (k | m * n)) : (k | m) :=
|
||
have H3 : gcd (m * k) (m * n) = m, from
|
||
calc
|
||
gcd (m * k) (m * n) = m * gcd k n : gcd_mul_left
|
||
... = m * 1 : H1
|
||
... = m : mul_one,
|
||
have H4 : (k | gcd (m * k) (m * n)), from dvd_gcd !dvd_mul_left H2,
|
||
H3 ▸ H4
|
||
|
||
theorem dvd_of_coprime_of_dvd_mul_left {m n k : ℕ} (H1 : coprime k m) (H2 : (k | m * n)) : (k | n) :=
|
||
dvd_of_coprime_of_dvd_mul_right H1 (!mul.comm ▸ H2)
|
||
|
||
theorem gcd_mul_left_cancel_of_coprime {k : ℕ} (m : ℕ) {n : ℕ} (H : coprime k n) :
|
||
gcd (k * m) n = gcd m n :=
|
||
have H1 : coprime (gcd (k * m) n) k, from
|
||
calc
|
||
gcd (gcd (k * m) n) k = gcd k (gcd (k * m) n) : gcd.comm
|
||
... = gcd (gcd k (k * m)) n : gcd.assoc
|
||
... = gcd (gcd (k * 1) (k * m)) n : mul_one
|
||
... = gcd (k * gcd 1 m) n : gcd_mul_left
|
||
... = gcd (k * 1) n : gcd_one_left
|
||
... = gcd k n : mul_one
|
||
... = 1 : H,
|
||
dvd.antisymm
|
||
(dvd_gcd (dvd_of_coprime_of_dvd_mul_left H1 !gcd_dvd_left) !gcd_dvd_right)
|
||
(dvd_gcd (dvd.trans !gcd_dvd_left !dvd_mul_left) !gcd_dvd_right)
|
||
|
||
theorem gcd_mul_right_cancel_of_coprime (m : ℕ) {k n : ℕ} (H : coprime k n) :
|
||
gcd (m * k) n = gcd m n :=
|
||
!mul.comm ▸ !gcd_mul_left_cancel_of_coprime H
|
||
|
||
theorem gcd_mul_left_cancel_of_coprime_right {k m : ℕ} (n : ℕ) (H : coprime k m) :
|
||
gcd m (k * n) = gcd m n :=
|
||
!gcd.comm ▸ !gcd.comm ▸ !gcd_mul_left_cancel_of_coprime H
|
||
|
||
theorem gcd_mul_right_cancel_of_coprime_right {k m : ℕ} (n : ℕ) (H : coprime k m) :
|
||
gcd m (n * k) = gcd m n :=
|
||
!gcd.comm ▸ !gcd.comm ▸ !gcd_mul_right_cancel_of_coprime H
|
||
|
||
theorem coprime_div_gcd_div_gcd {m n : ℕ} (H : gcd m n > 0) :
|
||
coprime (m div gcd m n) (n div gcd m n) :=
|
||
calc
|
||
gcd (m div gcd m n) (n div gcd m n) = gcd m n div gcd m n : gcd_div !gcd_dvd_left !gcd_dvd_right
|
||
... = 1 : div_self H
|
||
|
||
theorem exists_coprime {m n : ℕ} (H : gcd m n > 0) :
|
||
exists m' n', coprime m' n' ∧ m = m' * gcd m n ∧ n = n' * gcd m n :=
|
||
have H1 : m = (m div gcd m n) * gcd m n, from (div_mul_cancel !gcd_dvd_left)⁻¹,
|
||
have H2 : n = (n div gcd m n) * gcd m n, from (div_mul_cancel !gcd_dvd_right)⁻¹,
|
||
exists.intro _ (exists.intro _ (and.intro (coprime_div_gcd_div_gcd H) (and.intro H1 H2)))
|
||
|
||
theorem coprime_mul {m n k : ℕ} (H1 : coprime m k) (H2 : coprime n k) : coprime (m * n) k :=
|
||
calc
|
||
gcd (m * n) k = gcd n k : !gcd_mul_left_cancel_of_coprime H1
|
||
... = 1 : H2
|
||
|
||
theorem coprime_mul_right {k m n : ℕ} (H1 : coprime k m) (H2 : coprime k n) : coprime k (m * n) :=
|
||
coprime_swap (coprime_mul (coprime_swap H1) (coprime_swap H2))
|
||
|
||
theorem coprime_of_coprime_mul_left {k m n : ℕ} (H : coprime (k * m) n) : coprime m n :=
|
||
have H1 : (gcd m n | gcd (k * m) n), from !gcd_dvd_gcd_mul_left,
|
||
eq_one_of_dvd_one (H ▸ H1)
|
||
|
||
theorem coprime_of_coprime_mul_right {k m n : ℕ} (H : coprime (m * k) n) : coprime m n :=
|
||
coprime_of_coprime_mul_left (!mul.comm ▸ H)
|
||
|
||
theorem coprime_of_coprime_mul_left_right {k m n : ℕ} (H : coprime m (k * n)) : coprime m n :=
|
||
coprime_swap (coprime_of_coprime_mul_left (coprime_swap H))
|
||
|
||
theorem coprime_of_coprime_mul_right_right {k m n : ℕ} (H : coprime m (n * k)) : coprime m n :=
|
||
coprime_of_coprime_mul_left_right (!mul.comm ▸ H)
|
||
|
||
theorem exists_eq_prod_and_dvd_and_dvd {m n k} (H : (k | m * n)) :
|
||
∃ m' n', k = m' * n' ∧ (m' | m) ∧ (n' | n) :=
|
||
or.elim (eq_zero_or_pos (gcd k m))
|
||
(assume H1 : gcd k m = 0,
|
||
have H2 : k = 0, from eq_zero_of_gcd_eq_zero_left H1,
|
||
have H3 : m = 0, from eq_zero_of_gcd_eq_zero_right H1,
|
||
have H4 : k = 0 * n, from H2 ⬝ !zero_mul⁻¹,
|
||
have H5 : (0 | m), from H3⁻¹ ▸ !dvd.refl,
|
||
have H6 : (n | n), from !dvd.refl,
|
||
exists.intro _ (exists.intro _ (and.intro H4 (and.intro H5 H6))))
|
||
(assume H1 : gcd k m > 0,
|
||
have H2 : (gcd k m | k), from !gcd_dvd_left,
|
||
have H3 : (k div gcd k m | (m * n) div gcd k m), from div_dvd_div H2 H,
|
||
have H4 : (m * n) div gcd k m = (m div gcd k m) * n, from
|
||
calc
|
||
m * n div gcd k m = n * m div gcd k m : mul.comm
|
||
... = n * (m div gcd k m) : !mul_div_assoc !gcd_dvd_right
|
||
... = m div gcd k m * n : mul.comm,
|
||
have H5 : (k div gcd k m | (m div gcd k m) * n), from H4 ▸ H3,
|
||
have H6 : coprime (k div gcd k m) (m div gcd k m), from coprime_div_gcd_div_gcd H1,
|
||
have H7 : (k div gcd k m | n), from dvd_of_coprime_of_dvd_mul_left H6 H5,
|
||
have H8 : k = gcd k m * (k div gcd k m), from (mul_div_cancel' H2)⁻¹,
|
||
exists.intro _ (exists.intro _ (and.intro H8 (and.intro !gcd_dvd_right H7))))
|
||
|
||
end nat
|