lean2/hott/homotopy/smash.hlean

83 lines
3.3 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2016 Jakob von Raumer. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jakob von Raumer
The Smash Product of Types
-/
import hit.pushout .wedge .cofiber .susp .sphere
open eq pushout prod pointed Pointed is_trunc
definition product_of_wedge [constructor] (A B : Type*) : Wedge A B →* A ×* B :=
begin
fconstructor,
intro x, induction x with [a, b], exact (a, point B), exact (point A, b),
do 2 reflexivity
end
definition Smash (A B : Type*) := Cofiber (product_of_wedge A B)
open sphere susp unit
namespace smash
protected definition prec {X Y : Type*} {P : Smash X Y → Type}
(pxy : Π x y, P (inr (x, y))) (ps : P (inl ⋆))
(px : Π x, pathover P ps (glue (inl x)) (pxy x (point Y)))
(py : Π y, pathover P ps (glue (inr y)) (pxy (point X) y))
(pg : pathover (λ x, pathover P ps (glue x) (@prod.rec X Y (λ x, P (inr x)) pxy
(pushout.elim (λ a, (a, Point Y)) (pair (Point X)) (λ x, idp) x)))
(px (Point X)) (glue ⋆) (py (Point Y))) : Π s, P s :=
begin
intro s, induction s, induction x, exact ps,
induction x with [x, y], exact pxy x y,
induction x with [x, y, u], exact px x, exact py y,
induction u, exact pg,
end
protected definition prec_on {X Y : Type*} {P : Smash X Y → Type} (s : Smash X Y)
(pxy : Π x y, P (inr (x, y))) (ps : P (inl ⋆))
(px : Π x, pathover P ps (glue (inl x)) (pxy x (point Y)))
(py : Π y, pathover P ps (glue (inr y)) (pxy (point X) y))
(pg : pathover (λ x, pathover P ps (glue x) (@prod.rec X Y (λ x, P (inr x)) pxy
(pushout.elim (λ a, (a, Point Y)) (pair (Point X)) (λ x, idp) x)))
(px (Point X)) (glue ⋆) (py (Point Y))) : P s :=
smash.prec pxy ps px py pg s
/- definition smash_bool (X : Type*) : Smash X Bool ≃* X :=
begin
fconstructor,
{ fconstructor,
{ intro x, fapply cofiber.pelim_on x, clear x, exact point X, intro p,
cases p with [x', b], cases b with [x, x'], exact point X, exact x',
clear x, intro w, induction w with [y, b], reflexivity,
cases b, reflexivity, reflexivity, esimp,
apply eq_pathover, refine !ap_constant ⬝ph _, cases x, esimp, apply hdeg_square,
apply inverse, apply concat, apply ap_compose (λ a, prod.cases_on a _),
apply concat, apply ap _ !elim_glue, reflexivity },
reflexivity },
{ fapply is_equiv.adjointify,
{ intro x, apply inr, exact pair x bool.tt },
{ intro x, reflexivity },
{ intro s, esimp, induction s,
{ cases x, apply (glue (inr bool.tt))⁻¹ },
{ cases x with [x, b], cases b,
apply inverse, apply concat, apply (glue (inl x))⁻¹, apply (glue (inr bool.tt)),
reflexivity },
{ esimp, apply eq_pathover, induction x,
esimp, apply hinverse, krewrite ap_id, apply move_bot_of_left,
krewrite con.right_inv,
refine _ ⬝hp !(ap_compose (λ a, inr (pair a _)))⁻¹,
apply transpose, apply square_of_eq_bot, rewrite [con_idp, con.left_inv],
apply inverse, apply concat, apply ap (ap _),
} } }
definition susp_equiv_circle_smash (X : Type*) : Susp X ≃* Smash (Sphere 1) X :=
begin
fconstructor,
{ fconstructor, intro x, induction x, },
end-/
end smash