159 lines
5.5 KiB
Text
159 lines
5.5 KiB
Text
/-
|
||
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Author: Leonardo de Moura, Jeremy Avigad, Haitao Zhang
|
||
|
||
General operations on functions.
|
||
-/
|
||
prelude
|
||
import init.prod init.funext init.logic
|
||
|
||
namespace function
|
||
|
||
variables {A : Type} {B : Type} {C : Type} {D : Type} {E : Type}
|
||
|
||
definition compose [reducible] [unfold_full] (f : B → C) (g : A → B) : A → C :=
|
||
λx, f (g x)
|
||
|
||
definition compose_right [reducible] [unfold_full] (f : B → B → B) (g : A → B) : B → A → B :=
|
||
λ b a, f b (g a)
|
||
|
||
definition compose_left [reducible] [unfold_full] (f : B → B → B) (g : A → B) : A → B → B :=
|
||
λ a b, f (g a) b
|
||
|
||
definition on_fun [reducible] [unfold_full] (f : B → B → C) (g : A → B) : A → A → C :=
|
||
λx y, f (g x) (g y)
|
||
|
||
definition combine [reducible] [unfold_full] (f : A → B → C) (op : C → D → E) (g : A → B → D)
|
||
: A → B → E :=
|
||
λx y, op (f x y) (g x y)
|
||
|
||
definition const [reducible] [unfold_full] (B : Type) (a : A) : B → A :=
|
||
λx, a
|
||
|
||
definition dcompose [reducible] [unfold_full] {B : A → Type} {C : Π {x : A}, B x → Type}
|
||
(f : Π {x : A} (y : B x), C y) (g : Πx, B x) : Πx, C (g x) :=
|
||
λx, f (g x)
|
||
|
||
definition swap [reducible] [unfold_full] {C : A → B → Type} (f : Πx y, C x y) : Πy x, C x y :=
|
||
λy x, f x y
|
||
|
||
definition app [reducible] {B : A → Type} (f : Πx, B x) (x : A) : B x :=
|
||
f x
|
||
|
||
definition curry [reducible] [unfold_full] : (A × B → C) → A → B → C :=
|
||
λ f a b, f (a, b)
|
||
|
||
definition uncurry [reducible] [unfold 5] : (A → B → C) → (A × B → C) :=
|
||
λ f p, match p with (a, b) := f a b end
|
||
|
||
theorem curry_uncurry (f : A → B → C) : curry (uncurry f) = f :=
|
||
rfl
|
||
|
||
theorem uncurry_curry (f : A × B → C) : uncurry (curry f) = f :=
|
||
funext (λ p, match p with (a, b) := rfl end)
|
||
|
||
infixr ` ∘ ` := compose
|
||
infixr ` ∘' `:60 := dcompose
|
||
infixl ` on `:1 := on_fun
|
||
infixr ` $ `:1 := app
|
||
notation f ` -[` op `]- ` g := combine f op g
|
||
|
||
lemma left_id (f : A → B) : id ∘ f = f := rfl
|
||
|
||
lemma right_id (f : A → B) : f ∘ id = f := rfl
|
||
|
||
theorem compose.assoc (f : C → D) (g : B → C) (h : A → B) : (f ∘ g) ∘ h = f ∘ (g ∘ h) := rfl
|
||
|
||
theorem compose.left_id (f : A → B) : id ∘ f = f := rfl
|
||
|
||
theorem compose.right_id (f : A → B) : f ∘ id = f := rfl
|
||
|
||
theorem compose_const_right (f : B → C) (b : B) : f ∘ (const A b) = const A (f b) := rfl
|
||
|
||
definition injective [reducible] (f : A → B) : Prop := ∀ ⦃a₁ a₂⦄, f a₁ = f a₂ → a₁ = a₂
|
||
|
||
theorem injective_compose {g : B → C} {f : A → B} (Hg : injective g) (Hf : injective f) :
|
||
injective (g ∘ f) :=
|
||
take a₁ a₂, assume Heq, Hf (Hg Heq)
|
||
|
||
definition surjective [reducible] (f : A → B) : Prop := ∀ b, ∃ a, f a = b
|
||
|
||
theorem surjective_compose {g : B → C} {f : A → B} (Hg : surjective g) (Hf : surjective f) :
|
||
surjective (g ∘ f) :=
|
||
take c,
|
||
obtain b (Hb : g b = c), from Hg c,
|
||
obtain a (Ha : f a = b), from Hf b,
|
||
exists.intro a (eq.trans (congr_arg g Ha) Hb)
|
||
|
||
definition bijective (f : A → B) := injective f ∧ surjective f
|
||
|
||
theorem bijective_compose {g : B → C} {f : A → B} (Hg : bijective g) (Hf : bijective f) :
|
||
bijective (g ∘ f) :=
|
||
obtain Hginj Hgsurj, from Hg,
|
||
obtain Hfinj Hfsurj, from Hf,
|
||
and.intro (injective_compose Hginj Hfinj) (surjective_compose Hgsurj Hfsurj)
|
||
|
||
-- g is a left inverse to f
|
||
definition left_inverse (g : B → A) (f : A → B) : Prop := ∀x, g (f x) = x
|
||
|
||
definition id_of_left_inverse {g : B → A} {f : A → B} : left_inverse g f → g ∘ f = id :=
|
||
assume h, funext h
|
||
|
||
definition has_left_inverse (f : A → B) : Prop := ∃ finv : B → A, left_inverse finv f
|
||
|
||
-- g is a right inverse to f
|
||
definition right_inverse (g : B → A) (f : A → B) : Prop := left_inverse f g
|
||
|
||
definition id_of_right_inverse {g : B → A} {f : A → B} : right_inverse g f → f ∘ g = id :=
|
||
assume h, funext h
|
||
|
||
definition has_right_inverse (f : A → B) : Prop := ∃ finv : B → A, right_inverse finv f
|
||
|
||
theorem injective_of_left_inverse {g : B → A} {f : A → B} : left_inverse g f → injective f :=
|
||
assume h, take a b, assume faeqfb,
|
||
calc a = g (f a) : by rewrite h
|
||
... = g (f b) : faeqfb
|
||
... = b : by rewrite h
|
||
|
||
theorem injective_of_has_left_inverse {f : A → B} : has_left_inverse f → injective f :=
|
||
assume h, obtain (finv : B → A) (inv : left_inverse finv f), from h,
|
||
injective_of_left_inverse inv
|
||
|
||
theorem right_inverse_of_injective_of_left_inverse {f : A → B} {g : B → A}
|
||
(injf : injective f) (lfg : left_inverse f g) :
|
||
right_inverse f g :=
|
||
take x,
|
||
have H : f (g (f x)) = f x, from lfg (f x),
|
||
injf H
|
||
|
||
theorem surjective_of_has_right_inverse {f : A → B} : has_right_inverse f → surjective f :=
|
||
assume h, take b,
|
||
obtain (finv : B → A) (inv : right_inverse finv f), from h,
|
||
let a : A := finv b in
|
||
have h : f a = b, from calc
|
||
f a = (f ∘ finv) b : rfl
|
||
... = id b : by rewrite inv
|
||
... = b : rfl,
|
||
exists.intro a h
|
||
|
||
theorem left_inverse_of_surjective_of_right_inverse {f : A → B} {g : B → A}
|
||
(surjf : surjective f) (rfg : right_inverse f g) :
|
||
left_inverse f g :=
|
||
take y,
|
||
obtain x (Hx : f x = y), from surjf y,
|
||
calc
|
||
f (g y) = f (g (f x)) : Hx
|
||
... = f x : rfg
|
||
... = y : Hx
|
||
|
||
theorem injective_id : injective (@id A) := take a₁ a₂ H, H
|
||
|
||
theorem surjective_id : surjective (@id A) := take a, exists.intro a rfl
|
||
|
||
theorem bijective_id : bijective (@id A) := and.intro injective_id surjective_id
|
||
|
||
end function
|
||
|
||
-- copy reducible annotations to top-level
|
||
export [reduce_hints] [unfold_hints] function
|