lean2/src/kernel/expr.h
Leonardo de Moura 6a2c9ef076 Rename/Reorg some kernel files
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2013-07-24 14:56:31 -07:00

338 lines
16 KiB
C++

/*
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#pragma once
#include <iostream>
#include <limits>
#include "name.h"
#include "rc.h"
#include "mpz.h"
namespace lean {
/* =======================================
Expressions
expr ::= Var idx
| Constant name
| App [expr]
| Lambda name expr expr
| Pi name expr expr
| Prop
| Type universe
| Numeral value
TODO: add meta-variables, let, constructor references and match.
The main API is divided in the following sections
- Testers
- Constructors
- Accessors
- Miscellaneous
======================================= */
enum class expr_kind { Var, Constant, App, Lambda, Pi, Prop, Type, Numeral };
class max_sharing_functor;
/**
\brief Base class used to represent expressions.
In principle, the expr_cell class and subclasses should be located in the .cpp file.
However, this is performance critical code, and we want to be able to have
inline definitions.
*/
class expr_cell {
protected:
unsigned m_kind:16;
unsigned m_max_shared:1; // flag indicating if the cell has maximally shared subexpressions
unsigned m_hash;
MK_LEAN_RC(); // Declare m_rc counter
void dealloc();
bool max_shared() const { return m_max_shared == 1; }
void set_max_shared() { lean_assert(!max_shared()); m_max_shared = 1; }
friend class max_sharing_functor;
public:
expr_cell(expr_kind k, unsigned h);
expr_kind kind() const { return static_cast<expr_kind>(m_kind); }
unsigned hash() const { return m_hash; }
};
/**
\brief Instead of fixed universes, we use universe variables with
explicit user-declared constraints between universe variables.
Each universe variable is associated with a name.
If the Boolean in the following pair is true, then we are taking
the successor of the universe variable.
For additional information, see:
Explicit universes for the calculus of constructions, Courant J (2002).
*/
typedef std::pair<bool, name> universe_variable;
typedef universe_variable uvar;
/**
\brief Exprs for encoding formulas/expressions, types and proofs.
*/
class expr {
private:
expr_cell * m_ptr;
explicit expr(expr_cell * ptr):m_ptr(ptr) {}
public:
expr():m_ptr(0) {}
expr(expr const & s):m_ptr(s.m_ptr) { if (m_ptr) m_ptr->inc_ref(); }
expr(expr && s):m_ptr(s.m_ptr) { s.m_ptr = 0; }
~expr() { if (m_ptr) m_ptr->dec_ref(); }
friend void swap(expr & a, expr & b) { std::swap(a.m_ptr, b.m_ptr); }
expr & operator=(expr const & s) {
if (s.m_ptr)
s.m_ptr->inc_ref();
if (m_ptr)
m_ptr->dec_ref();
m_ptr = s.m_ptr;
return *this;
}
expr & operator=(expr && s) {
if (m_ptr)
m_ptr->dec_ref();
m_ptr = s.m_ptr;
s.m_ptr = 0;
return *this;
}
expr_kind kind() const { return m_ptr->kind(); }
unsigned hash() const { return m_ptr->hash(); }
expr_cell * raw() const { return m_ptr; }
friend expr var(unsigned idx);
friend expr constant(name const & n);
friend expr constant(name const & n, unsigned pos);
friend expr app(unsigned num_args, expr const * args);
friend expr app(std::initializer_list<expr> const & l);
friend expr lambda(name const & n, expr const & t, expr const & e);
friend expr pi(name const & n, expr const & t, expr const & e);
friend expr prop();
friend expr type(unsigned size, uvar const * vars);
friend expr type(std::initializer_list<uvar> const & l);
friend expr numeral(mpz const & n);
friend bool eqp(expr const & a, expr const & b) { return a.m_ptr == b.m_ptr; }
};
// =======================================
// Expr (internal) Representation
// 1. Free variables
class expr_var : public expr_cell {
unsigned m_vidx; // de Bruijn index
public:
expr_var(unsigned idx);
unsigned get_vidx() const { return m_vidx; }
};
// 2. Constants
class expr_const : public expr_cell {
name m_name;
unsigned m_pos; // position in the environment.
public:
expr_const(name const & n, unsigned pos = std::numeric_limits<unsigned>::max());
name const & get_name() const { return m_name; }
unsigned get_pos() const { return m_pos; }
};
// 3. Applications
class expr_app : public expr_cell {
unsigned m_num_args;
expr m_args[0];
friend expr app(unsigned num_args, expr const * args);
public:
expr_app(unsigned size);
~expr_app();
unsigned get_num_args() const { return m_num_args; }
expr const & get_arg(unsigned idx) const { lean_assert(idx < m_num_args); return m_args[idx]; }
expr const * begin_args() const { return m_args; }
expr const * end_args() const { return m_args + m_num_args; }
};
// 4. Abstraction
class expr_abstraction : public expr_cell {
name m_name;
expr m_type;
expr m_expr;
public:
expr_abstraction(expr_kind k, name const & n, expr const & t, expr const & e);
name const & get_name() const { return m_name; }
expr const & get_type() const { return m_type; }
expr const & get_expr() const { return m_expr; }
};
// 5. Lambda
class expr_lambda : public expr_abstraction {
public:
expr_lambda(name const & n, expr const & t, expr const & e);
};
// 6. Pi
class expr_pi : public expr_abstraction {
public:
expr_pi(name const & n, expr const & t, expr const & e);
};
// 7. Prop
class expr_prop : public expr_cell {
public:
expr_prop():expr_cell(expr_kind::Prop, 17) {}
};
// 8. Type lvl
class expr_type : public expr_cell {
unsigned m_size;
uvar m_vars[0];
public:
expr_type(unsigned size, uvar const * vars);
~expr_type();
unsigned size() const { return m_size; }
uvar const & get_var(unsigned idx) const { lean_assert(idx < m_size); return m_vars[idx]; }
};
// 9. Numerals
class expr_numeral : public expr_cell {
mpz m_numeral;
public:
expr_numeral(mpz const & n);
mpz const & get_num() const { return m_numeral; }
};
// =======================================
// =======================================
// Testers
inline bool is_var(expr_cell * e) { return e->kind() == expr_kind::Var; }
inline bool is_constant(expr_cell * e) { return e->kind() == expr_kind::Constant; }
inline bool is_app(expr_cell * e) { return e->kind() == expr_kind::App; }
inline bool is_lambda(expr_cell * e) { return e->kind() == expr_kind::Lambda; }
inline bool is_pi(expr_cell * e) { return e->kind() == expr_kind::Pi; }
inline bool is_prop(expr_cell * e) { return e->kind() == expr_kind::Prop; }
inline bool is_type(expr_cell * e) { return e->kind() == expr_kind::Type; }
inline bool is_numeral(expr_cell * e) { return e->kind() == expr_kind::Numeral; }
inline bool is_abstraction(expr_cell * e) { return is_lambda(e) || is_pi(e); }
inline bool is_sort(expr_cell * e) { return is_prop(e) || is_type(e); }
inline bool is_var(expr const & e) { return e.kind() == expr_kind::Var; }
inline bool is_constant(expr const & e) { return e.kind() == expr_kind::Constant; }
inline bool is_app(expr const & e) { return e.kind() == expr_kind::App; }
inline bool is_lambda(expr const & e) { return e.kind() == expr_kind::Lambda; }
inline bool is_pi(expr const & e) { return e.kind() == expr_kind::Pi; }
inline bool is_prop(expr const & e) { return e.kind() == expr_kind::Prop; }
inline bool is_type(expr const & e) { return e.kind() == expr_kind::Type; }
inline bool is_numeral(expr const & e) { return e.kind() == expr_kind::Numeral; }
inline bool is_abstraction(expr const & e) { return is_lambda(e) || is_pi(e); }
inline bool is_sort(expr const & e) { return is_prop(e) || is_type(e); }
// =======================================
// =======================================
// Constructors
inline expr var(unsigned idx) { return expr(new expr_var(idx)); }
inline expr constant(name const & n) { return expr(new expr_const(n)); }
inline expr constant(char const * n) { return constant(name(n)); }
inline expr constant(name const & n, unsigned pos) { return expr(new expr_const(n, pos)); }
expr app(unsigned num_args, expr const * args);
inline expr app(expr const & e1, expr const & e2) { expr args[2] = {e1, e2}; return app(2, args); }
inline expr app(expr const & e1, expr const & e2, expr const & e3) { expr args[3] = {e1, e2, e3}; return app(3, args); }
inline expr app(expr const & e1, expr const & e2, expr const & e3, expr const & e4) { expr args[4] = {e1, e2, e3, e4}; return app(4, args); }
inline expr app(expr const & e1, expr const & e2, expr const & e3, expr const & e4, expr const & e5) { expr args[5] = {e1, e2, e3, e4, e5}; return app(5, args); }
inline expr lambda(name const & n, expr const & t, expr const & e) { return expr(new expr_lambda(n, t, e)); }
inline expr lambda(char const * n, expr const & t, expr const & e) { return lambda(name(n), t, e); }
inline expr pi(name const & n, expr const & t, expr const & e) { return expr(new expr_pi(n, t, e)); }
inline expr pi(char const * n, expr const & t, expr const & e) { return pi(name(n), t, e); }
inline expr prop() { return expr(new expr_prop()); }
expr type(unsigned size, uvar const * vars);
inline expr type(uvar const & uv) { return type(1, &uv); }
inline expr type(std::initializer_list<uvar> const & l) { return type(l.size(), l.begin()); }
inline expr numeral(mpz const & n) { return expr(new expr_numeral(n)); }
// =======================================
// =======================================
// Casting (these functions are only needed for low-level code)
inline expr_var * to_var(expr_cell * e) { lean_assert(is_var(e)); return static_cast<expr_var*>(e); }
inline expr_const * to_constant(expr_cell * e) { lean_assert(is_constant(e)); return static_cast<expr_const*>(e); }
inline expr_app * to_app(expr_cell * e) { lean_assert(is_app(e)); return static_cast<expr_app*>(e); }
inline expr_abstraction * to_abstraction(expr_cell * e) { lean_assert(is_abstraction(e)); return static_cast<expr_abstraction*>(e); }
inline expr_lambda * to_lambda(expr_cell * e) { lean_assert(is_lambda(e)); return static_cast<expr_lambda*>(e); }
inline expr_pi * to_pi(expr_cell * e) { lean_assert(is_pi(e)); return static_cast<expr_pi*>(e); }
inline expr_prop * to_prop(expr_cell * e) { lean_assert(is_prop(e)); return static_cast<expr_prop*>(e); }
inline expr_type * to_type(expr_cell * e) { lean_assert(is_type(e)); return static_cast<expr_type*>(e); }
inline expr_numeral * to_numeral(expr_cell * e) { lean_assert(is_numeral(e)); return static_cast<expr_numeral*>(e); }
inline expr_var * to_var(expr const & e) { return to_var(e.raw()); }
inline expr_const * to_constant(expr const & e) { return to_constant(e.raw()); }
inline expr_app * to_app(expr const & e) { return to_app(e.raw()); }
inline expr_abstraction * to_abstraction(expr const & e) { return to_abstraction(e.raw()); }
inline expr_lambda * to_lambda(expr const & e) { return to_lambda(e.raw()); }
inline expr_pi * to_pi(expr const & e) { return to_pi(e.raw()); }
inline expr_prop * to_prop(expr const & e) { return to_prop(e.raw()); }
inline expr_type * to_type(expr const & e) { return to_type(e.raw()); }
inline expr_numeral * to_numeral(expr const & e) { return to_numeral(e.raw()); }
// =======================================
// =======================================
// Accessors
inline unsigned get_rc(expr_cell * e) { return e->get_rc(); }
inline bool is_shared(expr_cell * e) { return get_rc(e) > 1; }
inline unsigned get_var_idx(expr_cell * e) { return to_var(e)->get_vidx(); }
inline name const & get_const_name(expr_cell * e) { return to_constant(e)->get_name(); }
inline unsigned get_const_pos(expr_cell * e) { return to_constant(e)->get_pos(); }
inline unsigned get_num_args(expr_cell * e) { return to_app(e)->get_num_args(); }
inline expr const & get_arg(expr_cell * e, unsigned idx) { return to_app(e)->get_arg(idx); }
inline name const & get_abs_name(expr_cell * e) { return to_abstraction(e)->get_name(); }
inline expr const & get_abs_type(expr_cell * e) { return to_abstraction(e)->get_type(); }
inline expr const & get_abs_expr(expr_cell * e) { return to_abstraction(e)->get_expr(); }
inline unsigned get_ty_num_vars(expr_cell * e) { return to_type(e)->size(); }
inline uvar const & get_ty_var(expr_cell * e, unsigned idx) { return to_type(e)->get_var(idx); }
inline mpz const & get_numeral(expr_cell * e) { return to_numeral(e)->get_num(); }
inline unsigned get_rc(expr const & e) { return e.raw()->get_rc(); }
inline bool is_shared(expr const & e) { return get_rc(e) > 1; }
inline unsigned get_var_idx(expr const & e) { return to_var(e)->get_vidx(); }
inline name const & get_const_name(expr const & e) { return to_constant(e)->get_name(); }
inline unsigned get_const_pos(expr const & e) { return to_constant(e)->get_pos(); }
inline unsigned get_num_args(expr const & e) { return to_app(e)->get_num_args(); }
inline expr const & get_arg(expr const & e, unsigned idx) { return to_app(e)->get_arg(idx); }
inline expr const * begin_args(expr const & e) { return to_app(e)->begin_args(); }
inline expr const * end_args(expr const & e) { return to_app(e)->end_args(); }
inline name const & get_abs_name(expr const & e) { return to_abstraction(e)->get_name(); }
inline expr const & get_abs_type(expr const & e) { return to_abstraction(e)->get_type(); }
inline expr const & get_abs_expr(expr const & e) { return to_abstraction(e)->get_expr(); }
inline unsigned get_ty_num_vars(expr const & e) { return to_type(e)->size(); }
inline uvar const & get_ty_var(expr const & e, unsigned idx) { return to_type(e)->get_var(idx); }
inline mpz const & get_numeral(expr const & e) { return to_numeral(e)->get_num(); }
// =======================================
// =======================================
// Structural equality
bool operator==(expr const & a, expr const & b);
inline bool operator!=(expr const & a, expr const & b) { return !operator==(a, b); }
// =======================================
// =======================================
// Auxiliary functors
struct expr_hash { unsigned operator()(expr const & e) const { return e.hash(); } };
struct expr_eqp { bool operator()(expr const & e1, expr const & e2) const { return eqp(e1, e2); } };
struct expr_cell_hash { unsigned operator()(expr_cell * e) const { return e->hash(); } };
struct expr_cell_eqp { bool operator()(expr_cell * e1, expr_cell * e2) const { return e1 == e2; } };
// =======================================
// =======================================
// Miscellaneous
std::ostream & operator<<(std::ostream & out, expr const & a);
/**
\brief Wrapper for iterating over application arguments.
If n is an application, it allows us to write
for (expr const & arg : app_args(n)) {
... do something with argument
}
*/
struct app_args {
expr const & m_app;
app_args(expr const & a):m_app(a) { lean_assert(is_app(a)); }
expr const * begin() const { return &get_arg(m_app, 0); }
expr const * end() const { return begin() + get_num_args(m_app); }
};
// =======================================
}