lean2/library/data/int/basic.lean
Leonardo de Moura 6b7e79b62f feat(library/data/nat): mark more arguments implicit
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2014-08-28 10:38:58 -07:00

789 lines
29 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- Copyright (c) 2014 Floris van Doorn. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Authors: Floris van Doorn, Jeremy Avigad
-- int.basic
-- =========
-- The integers, with addition, multiplication, and subtraction.
import ..nat.basic ..nat.order ..nat.sub ..prod ..quotient ..quotient tools.tactic struc.relation
import struc.binary
import tools.fake_simplifier
using nat (hiding case)
using quotient
using subtype
using prod
using relation
using decidable
using binary
using fake_simplifier
using eq_ops
namespace int
-- ## The defining equivalence relation on ×
abbreviation rel (a b : × ) : Prop := pr1 a + pr2 b = pr2 a + pr1 b
theorem rel_comp (n m k l : ) : (rel (pair n m) (pair k l)) ↔ (n + l = m + k) :=
have H : (pr1 (pair n m) + pr2 (pair k l) = pr2 (pair n m) + pr1 (pair k l)) ↔ (n + l = m + k),
by simp,
H
-- add_rewrite rel_comp --local
theorem rel_refl {a : × } : rel a a :=
add_comm
theorem rel_symm {a b : × } (H : rel a b) : rel b a :=
calc
pr1 b + pr2 a = pr2 a + pr1 b : add_comm
... = pr1 a + pr2 b : H⁻¹
... = pr2 b + pr1 a : add_comm
theorem rel_trans {a b c : × } (H1 : rel a b) (H2 : rel b c) : rel a c :=
have H3 : pr1 a + pr2 c + pr2 b = pr2 a + pr1 c + pr2 b, from
calc
pr1 a + pr2 c + pr2 b = pr1 a + pr2 b + pr2 c : by simp
... = pr2 a + pr1 b + pr2 c : {H1}
... = pr2 a + (pr1 b + pr2 c) : by simp
... = pr2 a + (pr2 b + pr1 c) : {H2}
... = pr2 a + pr1 c + pr2 b : by simp,
show pr1 a + pr2 c = pr2 a + pr1 c, from add_cancel_right H3
theorem rel_equiv : is_equivalence rel :=
is_equivalence_mk
(is_reflexive_mk @rel_refl)
(is_symmetric_mk @rel_symm)
(is_transitive_mk @rel_trans)
theorem rel_flip {a b : × } (H : rel a b) : rel (flip a) (flip b) :=
calc
pr1 (flip a) + pr2 (flip b) = pr2 a + pr1 b : by simp
... = pr1 a + pr2 b : H⁻¹
... = pr2 (flip a) + pr1 (flip b) : by simp
-- ## The canonical representative of each equivalence class
definition proj (a : × ) : × :=
if pr1 a ≥ pr2 a then pair (pr1 a - pr2 a) 0 else pair 0 (pr2 a - pr1 a)
theorem proj_ge {a : × } (H : pr1 a ≥ pr2 a) : proj a = pair (pr1 a - pr2 a) 0 :=
if_pos H _ _
theorem proj_lt {a : × } (H : pr1 a < pr2 a) : proj a = pair 0 (pr2 a - pr1 a) :=
have H2 : ¬ pr1 a ≥ pr2 a, from lt_imp_not_ge H,
if_neg H2 _ _
theorem proj_le {a : × } (H : pr1 a ≤ pr2 a) : proj a = pair 0 (pr2 a - pr1 a) :=
or_elim le_or_gt
(assume H2 : pr2 a ≤ pr1 a,
have H3 : pr1 a = pr2 a, from le_antisym H H2,
calc
proj a = pair (pr1 a - pr2 a) 0 : proj_ge H2
... = pair (pr1 a - pr2 a) (pr1 a - pr1 a) : {sub_self⁻¹}
... = pair (pr2 a - pr2 a) (pr2 a - pr1 a) : {H3}
... = pair 0 (pr2 a - pr1 a) : {sub_self})
(assume H2 : pr1 a < pr2 a, proj_lt H2)
theorem proj_ge_pr1 {a : × } (H : pr1 a ≥ pr2 a) : pr1 (proj a) = pr1 a - pr2 a :=
calc
pr1 (proj a) = pr1 (pair (pr1 a - pr2 a) 0) : {proj_ge H}
... = pr1 a - pr2 a : pr1_pair (pr1 a - pr2 a) 0
theorem proj_ge_pr2 {a : × } (H : pr1 a ≥ pr2 a) : pr2 (proj a) = 0 :=
calc
pr2 (proj a) = pr2 (pair (pr1 a - pr2 a) 0) : {proj_ge H}
... = 0 : pr2_pair (pr1 a - pr2 a) 0
theorem proj_le_pr1 {a : × } (H : pr1 a ≤ pr2 a) : pr1 (proj a) = 0 :=
calc
pr1 (proj a) = pr1 (pair 0 (pr2 a - pr1 a)) : {proj_le H}
... = 0 : pr1_pair 0 (pr2 a - pr1 a)
theorem proj_le_pr2 {a : × } (H : pr1 a ≤ pr2 a) : pr2 (proj a) = pr2 a - pr1 a :=
calc
pr2 (proj a) = pr2 (pair 0 (pr2 a - pr1 a)) : {proj_le H}
... = pr2 a - pr1 a : pr2_pair 0 (pr2 a - pr1 a)
theorem proj_flip (a : × ) : proj (flip a) = flip (proj a) :=
have special : ∀a, pr2 a ≤ pr1 a → proj (flip a) = flip (proj a), from
take a,
assume H : pr2 a ≤ pr1 a,
have H2 : pr1 (flip a) ≤ pr2 (flip a), from P_flip H,
have H3 : pr1 (proj (flip a)) = pr1 (flip (proj a)), from
calc
pr1 (proj (flip a)) = 0 : proj_le_pr1 H2
... = pr2 (proj a) : symm (proj_ge_pr2 H)
... = pr1 (flip (proj a)) : symm (flip_pr1 (proj a)),
have H4 : pr2 (proj (flip a)) = pr2 (flip (proj a)), from
calc
pr2 (proj (flip a)) = pr2 (flip a) - pr1 (flip a) : proj_le_pr2 H2
... = pr1 a - pr1 (flip a) : {flip_pr2 a}
... = pr1 a - pr2 a : {flip_pr1 a}
... = pr1 (proj a) : (proj_ge_pr1 H)⁻¹
... = pr2 (flip (proj a)) : (flip_pr2 (proj a))⁻¹,
prod_eq H3 H4,
or_elim le_total
(assume H : pr2 a ≤ pr1 a, special a H)
(assume H : pr1 a ≤ pr2 a,
have H2 : pr2 (flip a) ≤ pr1 (flip a), from P_flip H,
calc
proj (flip a) = flip (flip (proj (flip a))) : symm (flip_flip (proj (flip a)))
... = flip (proj (flip (flip a))) : {symm (special (flip a) H2)}
... = flip (proj a) : {flip_flip a})
theorem proj_rel (a : × ) : rel a (proj a) :=
or_elim le_total
(assume H : pr2 a ≤ pr1 a,
calc
pr1 a + pr2 (proj a) = pr1 a + 0 : {proj_ge_pr2 H}
... = pr1 a : add_zero_right
... = pr2 a + (pr1 a - pr2 a) : (add_sub_le H)⁻¹
... = pr2 a + pr1 (proj a) : {(proj_ge_pr1 H)⁻¹})
(assume H : pr1 a ≤ pr2 a,
calc
pr1 a + pr2 (proj a) = pr1 a + (pr2 a - pr1 a) : {proj_le_pr2 H}
... = pr2 a : add_sub_le H
... = pr2 a + 0 : add_zero_right⁻¹
... = pr2 a + pr1 (proj a) : {(proj_le_pr1 H)⁻¹})
theorem proj_congr {a b : × } (H : rel a b) : proj a = proj b :=
have special : ∀a b, pr2 a ≤ pr1 a → rel a b → proj a = proj b, from
take a b,
assume H2 : pr2 a ≤ pr1 a,
assume H : rel a b,
have H3 : pr1 a + pr2 b ≤ pr2 a + pr1 b, from H ▸ le_refl,
have H4 : pr2 b ≤ pr1 b, from add_le_inv H3 H2,
have H5 : pr1 (proj a) = pr1 (proj b), from
calc
pr1 (proj a) = pr1 a - pr2 a : proj_ge_pr1 H2
... = pr1 a + pr2 b - pr2 b - pr2 a : {sub_add_left⁻¹}
... = pr2 a + pr1 b - pr2 b - pr2 a : {H}
... = pr2 a + pr1 b - pr2 a - pr2 b : {sub_comm}
... = pr1 b - pr2 b : {sub_add_left2}
... = pr1 (proj b) : (proj_ge_pr1 H4)⁻¹,
have H6 : pr2 (proj a) = pr2 (proj b), from
calc
pr2 (proj a) = 0 : proj_ge_pr2 H2
... = pr2 (proj b) : {symm (proj_ge_pr2 H4)},
prod_eq H5 H6,
or_elim le_total
(assume H2 : pr2 a ≤ pr1 a, special a b H2 H)
(assume H2 : pr1 a ≤ pr2 a,
have H3 : pr2 (flip a) ≤ pr1 (flip a), from P_flip H2,
have H4 : proj (flip a) = proj (flip b), from special (flip a) (flip b) H3 (rel_flip H),
have H5 : flip (proj a) = flip (proj b), from proj_flip a ▸ proj_flip b ▸ H4,
show proj a = proj b, from flip_inj H5)
theorem proj_inj {a b : × } (H : proj a = proj b) : rel a b :=
representative_map_equiv_inj rel_equiv proj_rel @proj_congr H
theorem proj_zero_or (a : × ) : pr1 (proj a) = 0 pr2 (proj a) = 0 :=
or_elim le_total
(assume H : pr2 a ≤ pr1 a, or_inr (proj_ge_pr2 H))
(assume H : pr1 a ≤ pr2 a, or_inl (proj_le_pr1 H))
theorem proj_idempotent (a : × ) : proj (proj a) = proj a :=
representative_map_idempotent_equiv proj_rel @proj_congr a
-- ## Definition of and basic theorems and definitions
definition int := image proj
notation `` := int
definition psub : × := fun_image proj
definition rep : × := subtype.elt_of
theorem quotient : is_quotient rel psub rep :=
representative_map_to_quotient_equiv rel_equiv proj_rel @proj_congr
theorem psub_rep (a : ) : psub (rep a) = a :=
abs_rep quotient a
theorem destruct (a : ) : ∃n m : , a = psub (pair n m) :=
exists_intro (pr1 (rep a))
(exists_intro (pr2 (rep a))
(calc
a = psub (rep a) : symm (psub_rep a)
... = psub (pair (pr1 (rep a)) (pr2 (rep a))) : {symm (prod_ext (rep a))}))
definition of_nat (n : ) : := psub (pair n 0)
theorem int_eq_decidable [instance] (a b : ) : decidable (a = b) := _
-- subtype_eq_decidable _ _ (prod_eq_decidable _ _ _ _)
opaque_hint (hiding int)
coercion of_nat
theorem eq_zero_intro (n : ) : psub (pair n n) = 0 :=
have H : rel (pair n n) (pair 0 0), by simp,
eq_abs quotient H
definition to_nat : := rec_constant quotient (fun v, dist (pr1 v) (pr2 v))
theorem to_nat_comp (n m : ) : (to_nat (psub (pair n m))) = dist n m :=
have H : ∀v w : × , rel v w → dist (pr1 v) (pr2 v) = dist (pr1 w) (pr2 w),
from take v w H, dist_eq_intro H,
have H2 : ∀v : × , (to_nat (psub v)) = dist (pr1 v) (pr2 v),
from take v, (comp_constant quotient H rel_refl),
iff_mp (by simp) H2 (pair n m)
-- add_rewrite to_nat_comp --local
theorem to_nat_of_nat (n : ) : to_nat (of_nat n) = n :=
calc
(to_nat (psub (pair n 0))) = dist n 0 : by simp
... = n : by simp
theorem of_nat_inj {n m : } (H : of_nat n = of_nat m) : n = m :=
calc
n = to_nat (of_nat n) : symm (to_nat_of_nat n)
... = to_nat (of_nat m) : {H}
... = m : to_nat_of_nat m
theorem to_nat_eq_zero {a : } (H : to_nat a = 0) : a = 0 :=
obtain (xa ya : ) (Ha : a = psub (pair xa ya)), from destruct a,
have H2 : dist xa ya = 0, from
calc
dist xa ya = (to_nat (psub (pair xa ya))) : by simp
... = (to_nat a) : {symm Ha}
... = 0 : H,
have H3 : xa = ya, from dist_eq_zero H2,
calc
a = psub (pair xa ya) : Ha
... = psub (pair ya ya) : {H3}
... = 0 : eq_zero_intro ya
-- add_rewrite to_nat_of_nat
-- ## neg
definition neg : := quotient_map quotient flip
-- TODO: is this good? Note: replacing 100 by max makes it bind stronger than application.
notation `-` x:100 := neg x
theorem neg_comp (n m : ) : -(psub (pair n m)) = psub (pair m n) :=
have H : ∀a, -(psub a) = psub (flip a),
from take a, comp_quotient_map quotient @rel_flip rel_refl,
calc
-(psub (pair n m)) = psub (flip (pair n m)) : H (pair n m)
... = psub (pair m n) : by simp
-- add_rewrite neg_comp --local
theorem neg_zero : -0 = 0 :=
calc -(psub (pair 0 0)) = psub (pair 0 0) : neg_comp 0 0
theorem neg_neg (a : ) : -(-a) = a :=
obtain (xa ya : ) (Ha : a = psub (pair xa ya)), from destruct a,
by simp
-- add_rewrite neg_neg neg_zero
theorem neg_inj {a b : } (H : -a = -b) : a = b :=
iff_mp (by simp) (congr_arg neg H)
theorem neg_move {a b : } (H : -a = b) : -b = a :=
subst H (neg_neg a)
theorem to_nat_neg (a : ) : (to_nat (-a)) = (to_nat a) :=
obtain (xa ya : ) (Ha : a = psub (pair xa ya)), from destruct a,
by simp
theorem pos_eq_neg {n m : } (H : n = -m) : n = 0 ∧ m = 0 :=
have H2 : ∀n : , n = psub (pair n 0), from take n : , refl (n),
have H3 : psub (pair n 0) = psub (pair 0 m), from iff_mp (by simp) H,
have H4 : rel (pair n 0) (pair 0 m), from R_intro_refl quotient @rel_refl H3,
have H5 : n + m = 0, from
calc
n + m = pr1 (pair n 0) + pr2 (pair 0 m) : by simp
... = pr2 (pair n 0) + pr1 (pair 0 m) : H4
... = 0 : by simp,
add_eq_zero H5
-- add_rewrite to_nat_neg
---reverse equalities
opaque_hint (exposing int)
theorem cases (a : ) : (∃n : , a = of_nat n) (∃n : , a = - n) :=
have Hrep : proj (rep a) = rep a, from @idempotent_image_fix _ proj proj_idempotent a,
or_imp_or (or_swap (proj_zero_or (rep a)))
(assume H : pr2 (proj (rep a)) = 0,
have H2 : pr2 (rep a) = 0, from subst Hrep H,
exists_intro (pr1 (rep a))
(calc
a = psub (rep a) : symm (psub_rep a)
... = psub (pair (pr1 (rep a)) (pr2 (rep a))) : {symm (prod_ext (rep a))}
... = psub (pair (pr1 (rep a)) 0) : {H2}
... = of_nat (pr1 (rep a)) : refl _))
(assume H : pr1 (proj (rep a)) = 0,
have H2 : pr1 (rep a) = 0, from subst Hrep H,
exists_intro (pr2 (rep a))
(calc
a = psub (rep a) : symm (psub_rep a)
... = psub (pair (pr1 (rep a)) (pr2 (rep a))) : {symm (prod_ext (rep a))}
... = psub (pair 0 (pr2 (rep a))) : {H2}
... = -(psub (pair (pr2 (rep a)) 0)) : by simp
... = -(of_nat (pr2 (rep a))) : refl _))
opaque_hint (hiding int)
---rename to by_cases in Lean 0.2 (for now using this to avoid name clash)
theorem int_by_cases {P : → Prop} (a : ) (H1 : ∀n : , P (of_nat n)) (H2 : ∀n : , P (-n)) :
P a :=
or_elim (cases a)
(assume H, obtain (n : ) (H3 : a = n), from H, subst (symm H3) (H1 n))
(assume H, obtain (n : ) (H3 : a = -n), from H, subst (symm H3) (H2 n))
---reverse equalities, rename
theorem cases_succ (a : ) : (∃n : , a = of_nat n) (∃n : , a = - (of_nat (succ n))) :=
or_elim (cases a)
(assume H : (∃n : , a = of_nat n), or_intro_left _ H)
(assume H,
obtain (n : ) (H2 : a = -(of_nat n)), from H,
discriminate
(assume H3 : n = 0,
have H4 : a = of_nat 0, from
calc
a = -(of_nat n) : H2
... = -(of_nat 0) : {H3}
... = of_nat 0 : neg_zero,
or_intro_left _ (exists_intro 0 H4))
(take k : ,
assume H3 : n = succ k,
have H4 : a = -(of_nat (succ k)), from subst H3 H2,
or_inr (exists_intro k H4)))
theorem int_by_cases_succ {P : → Prop} (a : )
(H1 : ∀n : , P (of_nat n)) (H2 : ∀n : , P (-(of_nat (succ n)))) : P a :=
or_elim (cases_succ a)
(assume H, obtain (n : ) (H3 : a = of_nat n), from H, subst (symm H3) (H1 n))
(assume H, obtain (n : ) (H3 : a = -(of_nat (succ n))), from H, subst (symm H3) (H2 n))
theorem of_nat_eq_neg_of_nat {n m : } (H : n = - m) : n = 0 ∧ m = 0 :=
have H2 : n = psub (pair 0 m), from
calc
n = -m : H
... = -(psub (pair m 0)) : refl (-m)
... = psub (pair 0 m) : by simp,
have H3 : rel (pair n 0) (pair 0 m), from R_intro_refl quotient @rel_refl H2,
have H4 : n + m = 0, from
calc
n + m = pr1 (pair n 0) + pr2 (pair 0 m) : by simp
... = pr2 (pair n 0) + pr1 (pair 0 m) : H3
... = 0 : by simp,
add_eq_zero H4
--some of these had to be transparent for theorem cases
opaque_hint (hiding psub proj)
-- ## add
theorem rel_add {a a' b b' : × } (Ha : rel a a') (Hb : rel b b')
: rel (map_pair2 add a b) (map_pair2 add a' b') :=
calc
pr1 (map_pair2 add a b) + pr2 (map_pair2 add a' b') = pr1 a + pr2 a' + (pr1 b + pr2 b') : by simp
... = pr2 a + pr1 a' + (pr1 b + pr2 b') : {Ha}
... = pr2 a + pr1 a' + (pr2 b + pr1 b') : {Hb}
... = pr2 (map_pair2 add a b) + pr1 (map_pair2 add a' b') : by simp
definition add : := quotient_map_binary quotient (map_pair2 nat.add)
infixl `+` := int.add
theorem add_comp (n m k l : ) : psub (pair n m) + psub (pair k l) = psub (pair (n + k) (m + l)) :=
have H : ∀a b, psub a + psub b = psub (map_pair2 nat.add a b),
from comp_quotient_map_binary_refl @rel_refl quotient @rel_add,
H (pair n m) (pair k l) ⬝ by simp
-- add_rewrite add_comp --local
theorem add_comm (a b : ) : a + b = b + a :=
obtain (xa ya : ) (Ha : a = psub (pair xa ya)), from destruct a,
obtain (xb yb : ) (Hb : b = psub (pair xb yb)), from destruct b,
by simp
theorem add_assoc (a b c : ) : a + b + c = a + (b + c) :=
obtain (xa ya : ) (Ha : a = psub (pair xa ya)), from destruct a,
obtain (xb yb : ) (Hb : b = psub (pair xb yb)), from destruct b,
obtain (xc yc : ) (Hc : c = psub (pair xc yc)), from destruct c,
by simp
theorem add_left_comm (a b c : ) : a + (b + c) = b + (a + c) :=
left_comm add_comm add_assoc a b c
theorem add_right_comm (a b c : ) : a + b + c = a + c + b :=
right_comm add_comm add_assoc a b c
-- ### interaction of add with other functions and constants
theorem add_zero_right (a : ) : a + 0 = a :=
obtain (xa ya : ) (Ha : a = psub (pair xa ya)), from destruct a,
have H0 : 0 = psub (pair 0 0), from refl 0,
by simp
theorem add_zero_left (a : ) : 0 + a = a :=
subst (add_comm a 0) (add_zero_right a)
theorem add_inverse_right (a : ) : a + -a = 0 :=
have H : ∀n, psub (pair n n) = 0, from eq_zero_intro,
obtain (xa ya : ) (Ha : a = psub (pair xa ya)), from destruct a,
by simp
theorem add_inverse_left (a : ) : -a + a = 0 :=
subst (add_comm a (-a)) (add_inverse_right a)
theorem neg_add_distr (a b : ) : -(a + b) = -a + -b :=
obtain (xa ya : ) (Ha : a = psub (pair xa ya)), from destruct a,
obtain (xb yb : ) (Hb : b = psub (pair xb yb)), from destruct b,
by simp
theorem to_nat_add_le (a b : ) : to_nat (a + b) ≤ to_nat a + to_nat b :=
--note: ≤ is nat::≤
obtain (xa ya : ) (Ha : a = psub (pair xa ya)), from destruct a,
obtain (xb yb : ) (Hb : b = psub (pair xb yb)), from destruct b,
have H : dist (xa + xb) (ya + yb) ≤ dist xa ya + dist xb yb,
from dist_add_le_add_dist,
by simp
-- TODO: note, we have to add #nat to get the right interpretation
theorem add_of_nat (n m : nat) : of_nat n + of_nat m = #nat n + m := -- this is of_nat (n + m)
have H : ∀n : , n = psub (pair n 0), from take n : , refl n,
by simp
-- add_rewrite add_of_nat
theorem of_nat_succ (n : ) : of_nat (succ n) = of_nat n + 1 :=
by simp
-- ## sub
definition sub (a b : ) : := a + -b
infixl `-` := int.sub
theorem sub_def (a b : ) : a - b = a + -b :=
refl (a - b)
theorem add_neg_right (a b : ) : a + -b = a - b :=
refl (a - b)
theorem add_neg_left (a b : ) : -a + b = b - a :=
add_comm (-a) b
-- opaque_hint (hiding int.sub)
theorem sub_neg_right (a b : ) : a - (-b) = a + b :=
subst (neg_neg b) (refl (a - (-b)))
theorem sub_neg_neg (a b : ) : -a - (-b) = b - a :=
subst (neg_neg b) (add_comm (-a) (-(-b)))
theorem sub_self (a : ) : a - a = 0 :=
add_inverse_right a
theorem sub_zero_right (a : ) : a - 0 = a :=
subst (symm neg_zero) (add_zero_right a)
theorem sub_zero_left (a : ) : 0 - a = -a :=
add_zero_left (-a)
theorem neg_sub (a b : ) : -(a - b) = -a + b :=
calc
-(a - b) = -a + -(-b) : neg_add_distr a (-b)
... = -a + b : {neg_neg b}
theorem neg_sub_flip (a b : ) : -(a - b) = b - a :=
calc
-(a - b) = -a + b : neg_sub a b
... = b - a : add_comm (-a) b
theorem sub_sub_assoc (a b c : ) : a - b - c = a - (b + c) :=
calc
a - b - c = a + (-b + -c) : add_assoc a (-b) (-c)
... = a + -(b + c) : {symm (neg_add_distr b c)}
theorem sub_add_assoc (a b c : ) : a - b + c = a - (b - c) :=
calc
a - b + c = a + (-b + c) : add_assoc a (-b) c
... = a + -(b - c) : {symm (neg_sub b c)}
theorem add_sub_assoc (a b c : ) : a + b - c = a + (b - c) :=
add_assoc a b (-c)
theorem add_sub_inverse (a b : ) : a + b - b = a :=
calc
a + b - b = a + (b - b) : add_assoc a b (-b)
... = a + 0 : {sub_self b}
... = a : add_zero_right a
theorem add_sub_inverse2 (a b : ) : a + b - a = b :=
subst (add_comm b a) (add_sub_inverse b a)
theorem sub_add_inverse (a b : ) : a - b + b = a :=
subst (add_right_comm a b (-b)) (add_sub_inverse a b)
-- add_rewrite add_zero_left add_zero_right
-- add_rewrite add_comm add_assoc add_left_comm
-- add_rewrite sub_def add_inverse_right add_inverse_left
-- add_rewrite neg_add_distr
---- add_rewrite sub_sub_assoc sub_add_assoc add_sub_assoc
---- add_rewrite add_neg_right add_neg_left
---- add_rewrite sub_self
-- ### inversion theorems for add and sub
-- a + a = 0 -> a = 0
-- a = -a -> a = 0
theorem add_cancel_right {a b c : } (H : a + c = b + c) : a = b :=
calc
a = a + c - c : symm (add_sub_inverse a c)
... = b + c - c : {H}
... = b : add_sub_inverse b c
theorem add_cancel_left {a b c : } (H : a + b = a + c) : b = c :=
add_cancel_right (subst (subst H (add_comm a b)) (add_comm a c))
theorem add_eq_zero_right {a b : } (H : a + b = 0) : -a = b :=
have H2 : a + -a = a + b, from subst (symm (add_inverse_right a)) (symm H),
show -a = b, from add_cancel_left H2
theorem add_eq_zero_left {a b : } (H : a + b = 0) : -b = a :=
neg_move (add_eq_zero_right H)
theorem add_eq_self {a b : } (H : a + b = a) : b = 0 :=
add_cancel_left (trans H (symm (add_zero_right a)))
theorem sub_inj_left {a b c : } (H : a - b = a - c) : b = c :=
neg_inj (add_cancel_left H)
theorem sub_inj_right {a b c : } (H : a - b = c - b) : a = c :=
add_cancel_right H
theorem sub_eq_zero {a b : } (H : a - b = 0) : a = b :=
neg_inj (add_eq_zero_right H)
theorem add_imp_sub_right {a b c : } (H : a + b = c) : c - b = a :=
have H2 : c - b + b = a + b, from trans (sub_add_inverse c b) (symm H),
add_cancel_right H2
theorem add_imp_sub_left {a b c : } (H : a + b = c) : c - a = b :=
add_imp_sub_right (subst (add_comm a b) H)
theorem sub_imp_add {a b c : } (H : a - b = c) : c + b = a :=
subst (neg_neg b) (add_imp_sub_right H)
theorem sub_imp_sub {a b c : } (H : a - b = c) : a - c = b :=
have H2 : c + b = a, from sub_imp_add H, add_imp_sub_left H2
theorem sub_add_add_right (a b c : ) : a + c - (b + c) = a - b :=
calc
a + c - (b + c) = a + (c - (b + c)) : add_sub_assoc a c (b + c)
... = a + (c - b - c) : {symm (sub_sub_assoc c b c)}
... = a + -b : {add_sub_inverse2 c (-b)}
theorem sub_add_add_left (a b c : ) : c + a - (c + b) = a - b :=
subst (add_comm b c) (subst (add_comm a c) (sub_add_add_right a b c))
-- TODO: fix this
theorem dist_def (n m : ) : dist n m = (to_nat (of_nat n - m)) :=
have H [fact] : of_nat n - m = psub (pair n m), from
calc
psub (pair n 0) + -psub (pair m 0) = psub (pair (n + 0) (0 + m)) : by simp
... = psub (pair n m) : by simp,
calc
dist n m = (to_nat (psub (pair n m))) : by simp
... = (to_nat (of_nat n - m)) : sorry -- {symm H}
-- ## mul
theorem rel_mul_prep {xa ya xb yb xn yn xm ym : }
(H1 : xa + yb = ya + xb) (H2 : xn + ym = yn + xm)
: xa * xn + ya * yn + (xb * ym + yb * xm) = xa * yn + ya * xn + (xb * xm + yb * ym) :=
have H3 : xa * xn + ya * yn + (xb * ym + yb * xm) + (yb * xn + xb * yn + (xb * xn + yb * yn))
= xa * yn + ya * xn + (xb * xm + yb * ym) + (yb * xn + xb * yn + (xb * xn + yb * yn)), from
calc
xa * xn + ya * yn + (xb * ym + yb * xm) + (yb * xn + xb * yn + (xb * xn + yb * yn))
= xa * xn + yb * xn + (ya * yn + xb * yn) + (xb * xn + xb * ym + (yb * yn + yb * xm))
: by simp
... = (xa + yb) * xn + (ya + xb) * yn + (xb * (xn + ym) + yb * (yn + xm)) : by simp
... = (ya + xb) * xn + (xa + yb) * yn + (xb * (yn + xm) + yb * (xn + ym)) : by simp
... = ya * xn + xb * xn + (xa * yn + yb * yn) + (xb * yn + xb * xm + (yb*xn + yb*ym))
: by simp
... = xa * yn + ya * xn + (xb * xm + yb * ym) + (yb * xn + xb * yn + (xb * xn + yb * yn))
: by simp,
nat.add_cancel_right H3
theorem rel_mul {u u' v v' : × } (H1 : rel u u') (H2 : rel v v') :
rel (pair (pr1 u * pr1 v + pr2 u * pr2 v) (pr1 u * pr2 v + pr2 u * pr1 v))
(pair (pr1 u' * pr1 v' + pr2 u' * pr2 v') (pr1 u' * pr2 v' + pr2 u' * pr1 v')) :=
calc
pr1 (pair (pr1 u * pr1 v + pr2 u * pr2 v) (pr1 u * pr2 v + pr2 u * pr1 v))
+ pr2 (pair (pr1 u' * pr1 v' + pr2 u' * pr2 v') (pr1 u' * pr2 v' + pr2 u' * pr1 v'))
= (pr1 u * pr1 v + pr2 u * pr2 v) + (pr1 u' * pr2 v' + pr2 u' * pr1 v') : by simp
... = (pr1 u * pr2 v + pr2 u * pr1 v) + (pr1 u' * pr1 v' + pr2 u' * pr2 v') : rel_mul_prep H1 H2
... = pr2 (pair (pr1 u * pr1 v + pr2 u * pr2 v) (pr1 u * pr2 v + pr2 u * pr1 v))
+ pr1 (pair (pr1 u' * pr1 v' + pr2 u' * pr2 v') (pr1 u' * pr2 v' + pr2 u' * pr1 v')) : by simp
definition mul : := quotient_map_binary quotient
(fun u v : × , pair (pr1 u * pr1 v + pr2 u * pr2 v) (pr1 u * pr2 v + pr2 u * pr1 v))
infixl `*` := int.mul
theorem mul_comp (n m k l : ) :
psub (pair n m) * psub (pair k l) = psub (pair (n * k + m * l) (n * l + m * k)) :=
have H : ∀u v,
psub u * psub v = psub (pair (pr1 u * pr1 v + pr2 u * pr2 v) (pr1 u * pr2 v + pr2 u * pr1 v)),
from comp_quotient_map_binary_refl @rel_refl quotient @rel_mul,
trans (H (pair n m) (pair k l)) (by simp)
-- add_rewrite mul_comp
theorem mul_comm (a b : ) : a * b = b * a :=
obtain (xa ya : ) (Ha : a = psub (pair xa ya)), from destruct a,
obtain (xb yb : ) (Hb : b = psub (pair xb yb)), from destruct b,
by simp
theorem mul_assoc (a b c : ) : (a * b) * c = a * (b * c) :=
obtain (xa ya : ) (Ha : a = psub (pair xa ya)), from destruct a,
obtain (xb yb : ) (Hb : b = psub (pair xb yb)), from destruct b,
obtain (xc yc : ) (Hc : c = psub (pair xc yc)), from destruct c,
by simp
theorem mul_left_comm : ∀a b c : , a * (b * c) = b * (a * c) :=
left_comm mul_comm mul_assoc
theorem mul_right_comm : ∀a b c : , a * b * c = a * c * b :=
right_comm mul_comm mul_assoc
-- ### interaction with other objects
theorem mul_zero_right (a : ) : a * 0 = 0 :=
obtain (xa ya : ) (Ha : a = psub (pair xa ya)), from destruct a,
have H0 : 0 = psub (pair 0 0), from refl 0,
by simp
theorem mul_zero_left (a : ) : 0 * a = 0 :=
subst (mul_comm a 0) (mul_zero_right a)
theorem mul_one_right (a : ) : a * 1 = a :=
obtain (xa ya : ) (Ha : a = psub (pair xa ya)), from destruct a,
have H1 : 1 = psub (pair 1 0), from refl 1,
by simp
theorem mul_one_left (a : ) : 1 * a = a :=
subst (mul_comm a 1) (mul_one_right a)
theorem mul_neg_right (a b : ) : a * -b = -(a * b) :=
obtain (xa ya : ) (Ha : a = psub (pair xa ya)), from destruct a,
obtain (xb yb : ) (Hb : b = psub (pair xb yb)), from destruct b,
by simp
theorem mul_neg_left (a b : ) : -a * b = -(a * b) :=
subst (mul_comm b a) (subst (mul_comm b (-a)) (mul_neg_right b a))
-- add_rewrite mul_neg_right mul_neg_left
theorem mul_neg_neg (a b : ) : -a * -b = a * b :=
by simp
theorem mul_right_distr (a b c : ) : (a + b) * c = a * c + b * c :=
obtain (xa ya : ) (Ha : a = psub (pair xa ya)), from destruct a,
obtain (xb yb : ) (Hb : b = psub (pair xb yb)), from destruct b,
obtain (xc yc : ) (Hc : c = psub (pair xc yc)), from destruct c,
by simp
theorem mul_left_distr (a b c : ) : a * (b + c) = a * b + a * c :=
calc
a * (b + c) = (b + c) * a : mul_comm a (b + c)
... = b * a + c * a : mul_right_distr b c a
... = a * b + c * a : {mul_comm b a}
... = a * b + a * c : {mul_comm c a}
theorem mul_sub_right_distr (a b c : ) : (a - b) * c = a * c - b * c :=
calc
(a + -b) * c = a * c + -b * c : mul_right_distr a (-b) c
... = a * c + - (b * c) : {mul_neg_left b c}
theorem mul_sub_left_distr (a b c : ) : a * (b - c) = a * b - a * c :=
calc
a * (b + -c) = a * b + a * -c : mul_left_distr a b (-c)
... = a * b + - (a * c) : {mul_neg_right a c}
theorem mul_of_nat (n m : ) : of_nat n * of_nat m = n * m :=
have H : ∀n : , n = psub (pair n 0), from take n : , refl n,
by simp
theorem mul_to_nat (a b : ) : (to_nat (a * b)) = #nat (to_nat a) * (to_nat b) :=
obtain (xa ya : ) (Ha : a = psub (pair xa ya)), from destruct a,
obtain (xb yb : ) (Hb : b = psub (pair xb yb)), from destruct b,
have H : dist xa ya * dist xb yb = dist (xa * xb + ya * yb) (xa * yb + ya * xb),
from dist_mul_dist,
by simp
-- add_rewrite mul_zero_left mul_zero_right mul_one_right mul_one_left
-- add_rewrite mul_comm mul_assoc mul_left_comm
-- add_rewrite mul_distr_right mul_distr_left mul_of_nat mul_sub_distr_left mul_sub_distr_right
-- ---------- inversion
theorem mul_eq_zero {a b : } (H : a * b = 0) : a = 0 b = 0 :=
have H2 : (to_nat a) * (to_nat b) = 0, from
calc
(to_nat a) * (to_nat b) = (to_nat (a * b)) : symm (mul_to_nat a b)
... = (to_nat 0) : {H}
... = 0 : to_nat_of_nat 0,
have H3 : (to_nat a) = 0 (to_nat b) = 0, from mul_eq_zero H2,
or_imp_or H3
(assume H : (to_nat a) = 0, to_nat_eq_zero H)
(assume H : (to_nat b) = 0, to_nat_eq_zero H)
theorem mul_cancel_left_or {a b c : } (H : a * b = a * c) : a = 0 b = c :=
have H2 : a * (b - c) = 0, by simp,
have H3 : a = 0 b - c = 0, from mul_eq_zero H2,
or_imp_or_right H3 (assume H4 : b - c = 0, sub_eq_zero H4)
theorem mul_cancel_left {a b c : } (H1 : a ≠ 0) (H2 : a * b = a * c) : b = c :=
resolve_right (mul_cancel_left_or H2) H1
theorem mul_cancel_right_or {a b c : } (H : b * a = c * a) : a = 0 b = c :=
mul_cancel_left_or (subst (subst H (mul_comm b a)) (mul_comm c a))
theorem mul_cancel_right {a b c : } (H1 : c ≠ 0) (H2 : a * c = b * c) : a = b :=
resolve_right (mul_cancel_right_or H2) H1
theorem mul_ne_zero {a b : } (Ha : a ≠ 0) (Hb : b ≠ 0) : a * b ≠ 0 :=
not_intro
(assume H : a * b = 0,
or_elim (mul_eq_zero H)
(assume H2 : a = 0, absurd H2 Ha)
(assume H2 : b = 0, absurd H2 Hb))
theorem mul_ne_zero_left {a b : } (H : a * b ≠ 0) : a ≠ 0 :=
not_intro
(assume H2 : a = 0,
have H3 : a * b = 0, by simp,
absurd H3 H)
theorem mul_ne_zero_right {a b : } (H : a * b ≠ 0) : b ≠ 0 :=
mul_ne_zero_left (subst (mul_comm a b) H)
-- set_opaque rel true
-- set_opaque rep true
-- set_opaque of_nat true
-- set_opaque to_nat true
-- set_opaque neg true
-- set_opaque add true
-- set_opaque mul true
-- set_opaque le true
-- set_opaque lt true
-- set_opaque sign true
--transparent: sub ge gt
end int -- namespace int