lean2/library/data/bool.lean

144 lines
4 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura
import general_notation
import logic.connectives logic.decidable logic.inhabited
open eq eq.ops decidable
inductive bool : Type :=
ff : bool,
tt : bool
namespace bool
protected definition rec_on {C : bool → Type} (b : bool) (H₁ : C ff) (H₂ : C tt) : C b :=
rec H₁ H₂ b
protected definition cases_on {p : bool → Prop} (b : bool) (H₁ : p ff) (H₂ : p tt) : p b :=
rec H₁ H₂ b
definition cond {A : Type} (b : bool) (t e : A) :=
rec_on b e t
theorem dichotomy (b : bool) : b = ff b = tt :=
cases_on b (or.inl rfl) (or.inr rfl)
theorem cond.ff {A : Type} (t e : A) : cond ff t e = e :=
rfl
theorem cond.tt {A : Type} (t e : A) : cond tt t e = t :=
rfl
theorem ff_ne_tt : ¬ ff = tt :=
assume H : ff = tt, absurd
(calc true = cond tt true false : !cond.tt⁻¹
... = cond ff true false : {H⁻¹}
... = false : !cond.ff)
true_ne_false
definition bor (a b : bool) :=
rec_on a (rec_on b ff tt) tt
theorem bor.tt_left (a : bool) : bor tt a = tt :=
rfl
notation a || b := bor a b
theorem bor.tt_right (a : bool) : a || tt = tt :=
cases_on a rfl rfl
theorem bor.ff_left (a : bool) : ff || a = a :=
cases_on a rfl rfl
theorem bor.ff_right (a : bool) : a || ff = a :=
cases_on a rfl rfl
theorem bor.id (a : bool) : a || a = a :=
cases_on a rfl rfl
theorem bor.comm (a b : bool) : a || b = b || a :=
cases_on a
(cases_on b rfl rfl)
(cases_on b rfl rfl)
theorem bor.assoc (a b c : bool) : (a || b) || c = a || (b || c) :=
cases_on a
(calc (ff || b) || c = b || c : {!bor.ff_left}
... = ff || (b || c) : !bor.ff_left⁻¹)
(calc (tt || b) || c = tt || c : {!bor.tt_left}
... = tt : !bor.tt_left
... = tt || (b || c) : !bor.tt_left⁻¹)
theorem bor.to_or {a b : bool} : a || b = tt → a = tt b = tt :=
rec_on a
(assume H : ff || b = tt,
have Hb : b = tt, from !bor.ff_left ▸ H,
or.inr Hb)
(assume H, or.inl rfl)
definition band (a b : bool) :=
rec_on a ff (rec_on b ff tt)
notation a && b := band a b
theorem band.ff_left (a : bool) : ff && a = ff :=
rfl
theorem band.tt_left (a : bool) : tt && a = a :=
cases_on a rfl rfl
theorem band.ff_right (a : bool) : a && ff = ff :=
cases_on a rfl rfl
theorem band.tt_right (a : bool) : a && tt = a :=
cases_on a rfl rfl
theorem band.id (a : bool) : a && a = a :=
cases_on a rfl rfl
theorem band.comm (a b : bool) : a && b = b && a :=
cases_on a
(cases_on b rfl rfl)
(cases_on b rfl rfl)
theorem band.assoc (a b c : bool) : (a && b) && c = a && (b && c) :=
cases_on a
(calc (ff && b) && c = ff && c : {!band.ff_left}
... = ff : !band.ff_left
... = ff && (b && c) : !band.ff_left⁻¹)
(calc (tt && b) && c = b && c : {!band.tt_left}
... = tt && (b && c) : !band.tt_left⁻¹)
theorem band.eq_tt_elim_left {a b : bool} (H : a && b = tt) : a = tt :=
or.elim (dichotomy a)
(assume H0 : a = ff,
absurd
(calc ff = ff && b : !band.ff_left⁻¹
... = a && b : {H0⁻¹}
... = tt : H)
ff_ne_tt)
(assume H1 : a = tt, H1)
theorem band.eq_tt_elim_right {a b : bool} (H : a && b = tt) : b = tt :=
band.eq_tt_elim_left (!band.comm ⬝ H)
definition bnot (a : bool) :=
rec_on a tt ff
theorem bnot.bnot (a : bool) : bnot (bnot a) = a :=
cases_on a rfl rfl
theorem bnot.false : bnot ff = tt :=
rfl
theorem bnot.true : bnot tt = ff :=
rfl
protected definition is_inhabited [instance] : inhabited bool :=
inhabited.mk ff
protected definition has_decidable_eq [instance] : decidable_eq bool :=
take a b : bool,
rec_on a
(rec_on b (inl rfl) (inr ff_ne_tt))
(rec_on b (inr (ne.symm ff_ne_tt)) (inl rfl))
end bool