41 lines
1.6 KiB
Text
41 lines
1.6 KiB
Text
/-
|
||
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
|
||
Module: data.prod
|
||
Author: Leonardo de Moura, Jeremy Avigad
|
||
-/
|
||
import logic.eq
|
||
open inhabited decidable eq.ops
|
||
|
||
namespace prod
|
||
variables {A B : Type} {a₁ a₂ : A} {b₁ b₂ : B} {u : A × B}
|
||
|
||
theorem pair_eq : a₁ = a₂ → b₁ = b₂ → (a₁, b₁) = (a₂, b₂) :=
|
||
assume H1 H2, H1 ▸ H2 ▸ rfl
|
||
|
||
protected theorem equal {p₁ p₂ : prod A B} : pr₁ p₁ = pr₁ p₂ → pr₂ p₁ = pr₂ p₂ → p₁ = p₂ :=
|
||
destruct p₁ (take a₁ b₁, destruct p₂ (take a₂ b₂ H₁ H₂, pair_eq H₁ H₂))
|
||
|
||
protected definition is_inhabited [instance] [h₁ : inhabited A] [h₂ : inhabited B] : inhabited (prod A B) :=
|
||
inhabited.mk (default A, default B)
|
||
|
||
protected definition has_decidable_eq [instance] [h₁ : decidable_eq A] [h₂ : decidable_eq B] : decidable_eq (A × B) :=
|
||
take (u v : A × B),
|
||
have H₃ : u = v ↔ (pr₁ u = pr₁ v) ∧ (pr₂ u = pr₂ v), from
|
||
iff.intro
|
||
(assume H, H ▸ and.intro rfl rfl)
|
||
(assume H, and.elim H (assume H₄ H₅, equal H₄ H₅)),
|
||
decidable_of_decidable_of_iff _ (iff.symm H₃)
|
||
|
||
definition swap {A : Type} : A × A → A × A
|
||
| (a, b) := (b, a)
|
||
|
||
theorem swap_swap {A : Type} : ∀ p : A × A, swap (swap p) = p
|
||
| (a, b) := rfl
|
||
|
||
theorem eq_of_swap_eq {A : Type} : ∀ p₁ p₂ : A × A, swap p₁ = swap p₂ → p₁ = p₂ :=
|
||
take p₁ p₂, assume seqs,
|
||
assert h₁ : swap (swap p₁) = swap (swap p₂), from congr_arg swap seqs,
|
||
by rewrite *swap_swap at h₁; exact h₁
|
||
end prod
|