lean2/library/data/quotient/util.lean

170 lines
6.9 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: data.quotient.util
Author: Floris van Doorn
-/
import logic ..prod algebra.relation
import tools.fake_simplifier
open prod eq.ops
open fake_simplifier
namespace quotient
/- auxiliary facts about products -/
variables {A B : Type}
/- flip -/
definition flip (a : A × B) : B × A := pair (pr2 a) (pr1 a)
theorem flip_def (a : A × B) : flip a = pair (pr2 a) (pr1 a) := rfl
theorem flip_pair (a : A) (b : B) : flip (pair a b) = pair b a := rfl
theorem flip_pr1 (a : A × B) : pr1 (flip a) = pr2 a := rfl
theorem flip_pr2 (a : A × B) : pr2 (flip a) = pr1 a := rfl
theorem flip_flip (a : A × B) : flip (flip a) = a :=
destruct a (take x y, rfl)
theorem P_flip {P : A → B → Prop} (a : A × B) (H : P (pr1 a) (pr2 a))
: P (pr2 (flip a)) (pr1 (flip a)) :=
(flip_pr1 a)⁻¹ ▸ (flip_pr2 a)⁻¹ ▸ H
theorem flip_inj {a b : A × B} (H : flip a = flip b) : a = b :=
have H2 : flip (flip a) = flip (flip b), from congr_arg flip H,
show a = b, from (flip_flip a) ▸ (flip_flip b) ▸ H2
/- coordinatewise unary maps -/
definition map_pair (f : A → B) (a : A × A) : B × B :=
pair (f (pr1 a)) (f (pr2 a))
theorem map_pair_def (f : A → B) (a : A × A)
: map_pair f a = pair (f (pr1 a)) (f (pr2 a)) :=
rfl
theorem map_pair_pair (f : A → B) (a a' : A)
: map_pair f (pair a a') = pair (f a) (f a') :=
(pr1.mk a a') ▸ (pr2.mk a a') ▸ rfl
theorem map_pair_pr1 (f : A → B) (a : A × A) : pr1 (map_pair f a) = f (pr1 a) :=
!pr1.mk
theorem map_pair_pr2 (f : A → B) (a : A × A) : pr2 (map_pair f a) = f (pr2 a) :=
!pr2.mk
/- coordinatewise binary maps -/
definition map_pair2 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) : C × C :=
pair (f (pr1 a) (pr1 b)) (f (pr2 a) (pr2 b))
theorem map_pair2_def {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) :
map_pair2 f a b = pair (f (pr1 a) (pr1 b)) (f (pr2 a) (pr2 b)) := rfl
theorem map_pair2_pair {A B C : Type} (f : A → B → C) (a a' : A) (b b' : B) :
map_pair2 f (pair a a') (pair b b') = pair (f a b) (f a' b') :=
calc
map_pair2 f (pair a a') (pair b b')
= pair (f (pr1 (pair a a')) b) (f (pr2 (pair a a')) (pr2 (pair b b')))
: {pr1.mk b b'}
... = pair (f (pr1 (pair a a')) b) (f (pr2 (pair a a')) b') : {pr2.mk b b'}
... = pair (f (pr1 (pair a a')) b) (f a' b') : {pr2.mk a a'}
... = pair (f a b) (f a' b') : {pr1.mk a a'}
theorem map_pair2_pr1 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) :
pr1 (map_pair2 f a b) = f (pr1 a) (pr1 b) := !pr1.mk
theorem map_pair2_pr2 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) :
pr2 (map_pair2 f a b) = f (pr2 a) (pr2 b) := !pr2.mk
theorem map_pair2_flip {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) :
flip (map_pair2 f a b) = map_pair2 f (flip a) (flip b) :=
have Hx : pr1 (flip (map_pair2 f a b)) = pr1 (map_pair2 f (flip a) (flip b)), from
calc
pr1 (flip (map_pair2 f a b)) = pr2 (map_pair2 f a b) : flip_pr1 _
... = f (pr2 a) (pr2 b) : map_pair2_pr2 f a b
... = f (pr1 (flip a)) (pr2 b) : {(flip_pr1 a)⁻¹}
... = f (pr1 (flip a)) (pr1 (flip b)) : {(flip_pr1 b)⁻¹}
... = pr1 (map_pair2 f (flip a) (flip b)) : (map_pair2_pr1 f _ _)⁻¹,
have Hy : pr2 (flip (map_pair2 f a b)) = pr2 (map_pair2 f (flip a) (flip b)), from
calc
pr2 (flip (map_pair2 f a b)) = pr1 (map_pair2 f a b) : flip_pr2 _
... = f (pr1 a) (pr1 b) : map_pair2_pr1 f a b
... = f (pr2 (flip a)) (pr1 b) : {flip_pr2 a}
... = f (pr2 (flip a)) (pr2 (flip b)) : {flip_pr2 b}
... = pr2 (map_pair2 f (flip a) (flip b)) : (map_pair2_pr2 f _ _)⁻¹,
pair_eq Hx Hy
-- add_rewrite flip_pr1 flip_pr2 flip_pair
-- add_rewrite map_pair_pr1 map_pair_pr2 map_pair_pair
-- add_rewrite map_pair2_pr1 map_pair2_pr2 map_pair2_pair
theorem map_pair2_comm {A B : Type} {f : A → A → B} (Hcomm : ∀a b : A, f a b = f b a)
(v w : A × A) : map_pair2 f v w = map_pair2 f w v :=
have Hx : pr1 (map_pair2 f v w) = pr1 (map_pair2 f w v), from
calc
pr1 (map_pair2 f v w) = f (pr1 v) (pr1 w) : map_pair2_pr1 f v w
... = f (pr1 w) (pr1 v) : Hcomm _ _
... = pr1 (map_pair2 f w v) : (map_pair2_pr1 f w v)⁻¹,
have Hy : pr2 (map_pair2 f v w) = pr2 (map_pair2 f w v), from
calc
pr2 (map_pair2 f v w) = f (pr2 v) (pr2 w) : map_pair2_pr2 f v w
... = f (pr2 w) (pr2 v) : Hcomm _ _
... = pr2 (map_pair2 f w v) : (map_pair2_pr2 f w v)⁻¹,
pair_eq Hx Hy
theorem map_pair2_assoc {A : Type} {f : A → A → A}
(Hassoc : ∀a b c : A, f (f a b) c = f a (f b c)) (u v w : A × A) :
map_pair2 f (map_pair2 f u v) w = map_pair2 f u (map_pair2 f v w) :=
have Hx : pr1 (map_pair2 f (map_pair2 f u v) w) =
pr1 (map_pair2 f u (map_pair2 f v w)), from
calc
pr1 (map_pair2 f (map_pair2 f u v) w)
= f (pr1 (map_pair2 f u v)) (pr1 w) : map_pair2_pr1 f _ _
... = f (f (pr1 u) (pr1 v)) (pr1 w) : {map_pair2_pr1 f _ _}
... = f (pr1 u) (f (pr1 v) (pr1 w)) : Hassoc (pr1 u) (pr1 v) (pr1 w)
... = f (pr1 u) (pr1 (map_pair2 f v w)) : {(map_pair2_pr1 f _ _)⁻¹}
... = pr1 (map_pair2 f u (map_pair2 f v w)) : (map_pair2_pr1 f _ _)⁻¹,
have Hy : pr2 (map_pair2 f (map_pair2 f u v) w) =
pr2 (map_pair2 f u (map_pair2 f v w)), from
calc
pr2 (map_pair2 f (map_pair2 f u v) w)
= f (pr2 (map_pair2 f u v)) (pr2 w) : map_pair2_pr2 f _ _
... = f (f (pr2 u) (pr2 v)) (pr2 w) : {map_pair2_pr2 f _ _}
... = f (pr2 u) (f (pr2 v) (pr2 w)) : Hassoc (pr2 u) (pr2 v) (pr2 w)
... = f (pr2 u) (pr2 (map_pair2 f v w)) : {map_pair2_pr2 f _ _}
... = pr2 (map_pair2 f u (map_pair2 f v w)) : (map_pair2_pr2 f _ _)⁻¹,
pair_eq Hx Hy
theorem map_pair2_id_right {A B : Type} {f : A → B → A} {e : B} (Hid : ∀a : A, f a e = a)
(v : A × A) : map_pair2 f v (pair e e) = v :=
have Hx : pr1 (map_pair2 f v (pair e e)) = pr1 v, from
(calc
pr1 (map_pair2 f v (pair e e)) = f (pr1 v) (pr1 (pair e e)) : by simp
... = f (pr1 v) e : by simp
... = pr1 v : Hid (pr1 v)),
have Hy : pr2 (map_pair2 f v (pair e e)) = pr2 v, from
(calc
pr2 (map_pair2 f v (pair e e)) = f (pr2 v) (pr2 (pair e e)) : by simp
... = f (pr2 v) e : by simp
... = pr2 v : Hid (pr2 v)),
prod.equal Hx Hy
theorem map_pair2_id_left {A B : Type} {f : B → A → A} {e : B} (Hid : ∀a : A, f e a = a)
(v : A × A) : map_pair2 f (pair e e) v = v :=
have Hx : pr1 (map_pair2 f (pair e e) v) = pr1 v, from
calc
pr1 (map_pair2 f (pair e e) v) = f (pr1 (pair e e)) (pr1 v) : by simp
... = f e (pr1 v) : by simp
... = pr1 v : Hid (pr1 v),
have Hy : pr2 (map_pair2 f (pair e e) v) = pr2 v, from
calc
pr2 (map_pair2 f (pair e e) v) = f (pr2 (pair e e)) (pr2 v) : by simp
... = f e (pr2 v) : by simp
... = pr2 v : Hid (pr2 v),
prod.equal Hx Hy
end quotient