lean2/hott/init/ua.hlean
2015-05-18 15:59:55 -07:00

75 lines
2.4 KiB
Text

/-
Copyright (c) 2014 Jakob von Raumer. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: init.ua
Author: Jakob von Raumer
Ported from Coq HoTT
-/
prelude
import .equiv
open eq equiv is_equiv equiv.ops
--Ensure that the types compared are in the same universe
section
universe variable l
variables {A B : Type.{l}}
definition is_equiv_cast_of_eq (H : A = B) : is_equiv (cast H) :=
(@is_equiv_tr Type (λX, X) A B H)
definition equiv_of_eq (H : A = B) : A ≃ B :=
equiv.mk _ (is_equiv_cast_of_eq H)
end
axiom univalence (A B : Type) : is_equiv (@equiv_of_eq A B)
attribute univalence [instance]
-- This is the version of univalence axiom we will probably use most often
definition ua [reducible] {A B : Type} : A ≃ B → A = B :=
equiv_of_eq⁻¹
definition eq_equiv_equiv (A B : Type) : (A = B) ≃ (A ≃ B) :=
equiv.mk equiv_of_eq _
definition equiv_of_eq_ua [reducible] {A B : Type} (f : A ≃ B) : equiv_of_eq (ua f) = f :=
right_inv equiv_of_eq f
definition cast_ua_fn {A B : Type} (f : A ≃ B) : cast (ua f) = f :=
ap to_fun (equiv_of_eq_ua f)
definition cast_ua {A B : Type} (f : A ≃ B) (a : A) : cast (ua f) a = f a :=
ap10 (cast_ua_fn f) a
definition ua_equiv_of_eq [reducible] {A B : Type} (p : A = B) : ua (equiv_of_eq p) = p :=
left_inv equiv_of_eq p
namespace equiv
-- One consequence of UA is that we can transport along equivalencies of types
-- We can use this for calculation evironments
protected definition transport_of_equiv [subst] (P : Type → Type) {A B : Type} (H : A ≃ B)
: P A → P B :=
eq.transport P (ua H)
-- we can "recurse" on equivalences, by replacing them by (equiv_of_eq _)
definition rec_on_ua {A B : Type} {P : A ≃ B → Type}
(f : A ≃ B) (H : Π(q : A = B), P (equiv_of_eq q)) : P f :=
right_inv equiv_of_eq f ▸ H (ua f)
-- a variant where (equiv_of_eq (ua f)) will be replaced by f in the new goal
definition rec_on_ua2 {A B : Type} {P : A ≃ B → A = B → Type}
(f : A ≃ B) (H : Π(q : A = B), P (equiv_of_eq q) q) : P f (ua f) :=
right_inv equiv_of_eq f ▸ H (ua f)
-- a variant where we immediately recurse on the equality in the new goal
definition rec_on_ua3 {A : Type} {P : Π{B}, A ≃ B → A = B → Type} {B : Type}
(f : A ≃ B) (H : P equiv.refl idp) : P f (ua f) :=
rec_on_ua2 f (λq, eq.rec_on q H)
end equiv