lean2/src/library/blast/blast.cpp
2015-12-04 08:26:03 -08:00

1066 lines
37 KiB
C++

/*
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#include <vector>
#include "util/sstream.h"
#include "kernel/for_each_fn.h"
#include "kernel/find_fn.h"
#include "kernel/type_checker.h"
#include "library/replace_visitor.h"
#include "library/util.h"
#include "library/reducible.h"
#include "library/class.h"
#include "library/constants.h"
#include "library/type_context.h"
#include "library/relation_manager.h"
#include "library/congr_lemma_manager.h"
#include "library/abstract_expr_manager.h"
#include "library/light_lt_manager.h"
#include "library/projection.h"
#include "library/scoped_ext.h"
#include "library/tactic/goal.h"
#include "library/blast/expr.h"
#include "library/blast/state.h"
#include "library/blast/blast.h"
#include "library/blast/proof_expr.h"
#include "library/blast/blast_exception.h"
#include "library/blast/simple_strategy.h"
#include "library/blast/choice_point.h"
#include "library/blast/congruence_closure.h"
#include "library/blast/trace.h"
#include "library/blast/options.h"
namespace lean {
namespace blast {
static name * g_prefix = nullptr;
static name * g_tmp_prefix = nullptr;
class imp_extension_manager {
std::vector<pair<ext_state_maker &, unsigned> > m_entries;
public:
std::vector<pair<ext_state_maker &, unsigned> > const & get_entries() { return m_entries; }
unsigned register_imp_extension(ext_state_maker & state_maker) {
unsigned state_id = m_entries.size();
unsigned ext_id = register_branch_extension(new imp_extension(state_id));
m_entries.emplace_back(state_maker, ext_id);
return state_id;
}
};
static imp_extension_manager * g_imp_extension_manager = nullptr;
static imp_extension_manager & get_imp_extension_manager() {
return *g_imp_extension_manager;
}
struct imp_extension_entry {
std::unique_ptr<imp_extension_state> m_ext_state;
unsigned m_ext_id;
imp_extension * m_ext_of_ext_state;
imp_extension_entry(imp_extension_state * ext_state, unsigned ext_id, imp_extension * ext_of_ext_state):
m_ext_state(ext_state), m_ext_id(ext_id), m_ext_of_ext_state(ext_of_ext_state) {}
};
class blastenv {
friend class scope_assignment;
friend class scope_unfold_macro_pred;
typedef std::vector<tmp_type_context *> tmp_type_context_pool;
typedef std::unique_ptr<tmp_type_context> tmp_type_context_ptr;
typedef std::vector<imp_extension_entry> imp_extension_entries;
environment m_env;
io_state m_ios;
name_generator m_ngen;
tmp_local_generator m_tmp_local_generator;
list<expr> m_initial_context; // for setting type_context local instances
name_set m_lemma_hints;
name_set m_unfold_hints;
name_map<level> m_uvar2uref; // map global universe metavariables to blast uref's
name_map<pair<expr, expr>> m_mvar2meta_mref; // map global metavariables to blast mref's
name_predicate m_not_reducible_pred;
name_predicate m_class_pred;
name_predicate m_instance_pred;
name_map<projection_info> m_projection_info;
is_relation_pred m_is_relation_pred;
state m_curr_state; // current state
tmp_type_context_pool m_tmp_ctx_pool;
tmp_type_context_ptr m_tmp_ctx; // for app_builder and congr_lemma_manager
app_builder m_app_builder;
fun_info_manager m_fun_info_manager;
congr_lemma_manager m_congr_lemma_manager;
abstract_expr_manager m_abstract_expr_manager;
light_lt_manager m_light_lt_manager;
imp_extension_entries m_imp_extension_entries;
relation_info_getter m_rel_getter;
refl_info_getter m_refl_getter;
symm_info_getter m_symm_getter;
trans_info_getter m_trans_getter;
unfold_macro_pred m_unfold_macro_pred;
bool m_classical{false};
class tctx : public type_context {
blastenv & m_benv;
std::vector<state::assignment_snapshot> m_stack;
public:
tctx(blastenv & benv):
type_context(benv.m_env, benv.m_ios, benv.m_tmp_local_generator),
m_benv(benv) {}
virtual bool is_extra_opaque(name const & n) const override {
// TODO(Leo): class and instances
return m_benv.m_not_reducible_pred(n) || m_benv.m_projection_info.contains(n);
}
virtual bool should_unfold_macro(expr const & e) const override {
return m_benv.m_unfold_macro_pred(e);
}
virtual bool is_uvar(level const & l) const override {
return blast::is_uref(l);
}
virtual bool is_mvar(expr const & e) const override {
return blast::is_mref(e);
}
virtual optional<level> get_assignment(level const & u) const override {
if (auto v = m_benv.m_curr_state.get_uref_assignment(u))
return some_level(*v);
else
return none_level();
}
virtual optional<expr> get_assignment(expr const & m) const override {
if (auto v = m_benv.m_curr_state.get_mref_assignment(m))
return some_expr(*v);
else
return none_expr();
}
virtual void update_assignment(level const & u, level const & v) override {
m_benv.m_curr_state.assign_uref(u, v);
}
virtual void update_assignment(expr const & m, expr const & v) override {
m_benv.m_curr_state.assign_mref(m, v);
}
bool check_href_core(metavar_decl const & d, expr const & h, hypothesis_idx_set & visited) {
lean_assert(is_href(h));
lean_assert(!d.contains_href(h));
if (visited.contains(href_index(h)))
return true;
visited.insert(href_index(h));
state & s = m_benv.m_curr_state;
hypothesis const & h_decl = s.get_hypothesis_decl(h);
if (h_decl.is_assumption())
return false;
return !find(*h_decl.get_value(), [&](expr const & e, unsigned) {
return is_href(e) && !d.contains_href(e) && !check_href_core(d, e, visited);
});
}
bool check_href(metavar_decl const & d, expr const & h) {
lean_assert(is_href(h));
if (d.contains_href(h))
return true;
hypothesis_idx_set visited;
return check_href_core(d, h, visited);
}
virtual bool validate_assignment(expr const & m, buffer<expr> const & locals, expr const & v) override {
// We must check
// 1. All href in new_v are in the context of m.
// 2. The context of any (unassigned) mref in new_v must be a subset of the context of m.
// If it is not we force it to be.
// 3. Any (non tmp) local constant occurring in new_v occurs in locals
// 4. m does not occur in new_v
state & s = m_benv.m_curr_state;
metavar_decl const * d = s.get_metavar_decl(m);
lean_assert(d);
bool ok = true;
for_each(v, [&](expr const & e, unsigned) {
if (!ok)
return false; // stop search
if (is_href(e)) {
if (!check_href(*d, e)) {
ok = false; // failed 1
return false;
}
} else if (is_local(e) && !is_tmp_local(e)) {
if (std::all_of(locals.begin(), locals.end(), [&](expr const & a) {
return mlocal_name(a) != mlocal_name(e); })) {
ok = false; // failed 3
return false;
}
} else if (is_mref(e)) {
if (m == e) {
ok = false; // failed 4
return false;
}
s.restrict_mref_context_using(e, m); // enforce 2
return false;
}
return true;
});
return ok;
}
/** \brief Return the type of a local constant (local or not).
\remark This method allows the customer to store the type of local constants
in a different place. */
virtual expr infer_local(expr const & e) const override {
if (is_href(e)) {
state const & s = m_benv.m_curr_state;
hypothesis const & h = s.get_hypothesis_decl(e);
return h.get_type();
} else {
return mlocal_type(e);
}
}
virtual expr infer_metavar(expr const & m) const override {
// Remark: we do not tolerate external meta-variables here.
lean_assert(is_mref(m));
state const & s = m_benv.m_curr_state;
metavar_decl const * d = s.get_metavar_decl(m);
lean_assert(d);
return d->get_type();
}
virtual level mk_uvar() override {
return mk_fresh_uref();
}
virtual expr mk_mvar(expr const & type) override {
return m_benv.m_curr_state.mk_metavar(type);
}
virtual void push() override {
m_stack.push_back(m_benv.m_curr_state.save_assignment());
}
virtual void pop() override {
m_benv.m_curr_state.restore_assignment(m_stack.back());
m_stack.pop_back();
}
virtual void commit() override {
m_stack.pop_back();
}
};
class to_blast_expr_fn : public replace_visitor {
type_checker m_tc;
state & m_state;
// We map each metavariable to a metavariable application and the mref associated with it.
name_map<level> & m_uvar2uref;
name_map<pair<expr, expr>> & m_mvar2meta_mref;
name_map<expr> & m_local2href;
level to_blast_level(level const & l) {
level lhs;
switch (l.kind()) {
case level_kind::Succ: return mk_succ(to_blast_level(succ_of(l)));
case level_kind::Zero: return mk_level_zero();
case level_kind::Param: return mk_param_univ(param_id(l));
case level_kind::Global: return mk_global_univ(global_id(l));
case level_kind::Max:
lhs = to_blast_level(max_lhs(l));
return mk_max(lhs, to_blast_level(max_rhs(l)));
case level_kind::IMax:
lhs = to_blast_level(imax_lhs(l));
return mk_imax(lhs, to_blast_level(imax_rhs(l)));
case level_kind::Meta:
if (auto r = m_uvar2uref.find(meta_id(l))) {
return *r;
} else {
level uref = mk_fresh_uref();
m_uvar2uref.insert(meta_id(l), uref);
return uref;
}
}
lean_unreachable();
}
virtual expr visit_sort(expr const & e) {
return mk_sort(to_blast_level(sort_level(e)));
}
virtual expr visit_macro(expr const & e) {
buffer<expr> new_args;
for (unsigned i = 0; i < macro_num_args(e); i++) {
new_args.push_back(visit(macro_arg(e, i)));
}
return mk_macro(macro_def(e), new_args.size(), new_args.data());
}
virtual expr visit_constant(expr const & e) {
levels new_ls = map(const_levels(e), [&](level const & l) { return to_blast_level(l); });
return mk_constant(const_name(e), new_ls);
}
virtual expr visit_var(expr const & e) {
return mk_var(var_idx(e));
}
void throw_unsupported_metavar_occ(expr const & e) {
// TODO(Leo): improve error message
throw blast_exception("'blast' tactic failed, goal contains a "
"meta-variable application that is not supported", e);
}
expr mk_mref_app(expr const & mref, unsigned nargs, expr const * args) {
lean_assert(is_mref(mref));
buffer<expr> new_args;
for (unsigned i = 0; i < nargs; i++) {
new_args.push_back(visit(args[i]));
}
return mk_app(mref, new_args.size(), new_args.data());
}
expr visit_meta_app(expr const & e) {
lean_assert(is_meta(e));
buffer<expr> args;
expr const & mvar = get_app_args(e, args);
if (pair<expr, expr> const * meta_mref = m_mvar2meta_mref.find(mlocal_name(mvar))) {
lean_assert(is_meta(meta_mref->first));
lean_assert(is_mref(meta_mref->second));
buffer<expr> decl_args;
get_app_args(meta_mref->first, decl_args);
if (decl_args.size() > args.size())
throw_unsupported_metavar_occ(e);
// Make sure the the current metavariable application prefix matches the one
// found before.
for (unsigned i = 0; i < decl_args.size(); i++) {
if (is_local(decl_args[i])) {
if (!is_local(args[i]) || mlocal_name(args[i]) != mlocal_name(decl_args[i]))
throw_unsupported_metavar_occ(e);
} else if (decl_args[i] != args[i]) {
throw_unsupported_metavar_occ(e);
}
}
return mk_mref_app(meta_mref->second, args.size() - decl_args.size(), args.data() + decl_args.size());
} else {
unsigned i = 0;
hypothesis_idx_buffer ctx;
// Find prefix that contains only closed terms.
for (; i < args.size(); i++) {
if (!closed(args[i]))
break;
if (!is_local(args[i])) {
// Ignore arguments that are not local constants.
// In the blast tactic we only support higher-order patterns.
continue;
}
expr const & l = args[i];
if (!std::all_of(args.begin(), args.begin() + i,
[&](expr const & prev) { return mlocal_name(prev) != mlocal_name(l); })) {
// Local has already been processed
continue;
}
auto href = m_local2href.find(mlocal_name(l));
if (!href) {
// One of the arguments is a local constant that is not in m_local2href
throw_unsupported_metavar_occ(e);
}
ctx.push_back(href_index(*href));
}
unsigned prefix_sz = i;
expr aux = e;
for (; i < args.size(); i++)
aux = app_fn(aux);
lean_assert(is_meta(aux));
expr type = visit(m_tc.infer(aux).first);
expr mref = m_state.mk_metavar(ctx, type);
m_mvar2meta_mref.insert(mlocal_name(mvar), mk_pair(e, mref));
return mk_mref_app(mref, args.size() - prefix_sz, args.data() + prefix_sz);
}
}
virtual expr visit_meta(expr const & e) {
return visit_meta_app(e);
}
virtual expr visit_local(expr const & e) {
if (auto r = m_local2href.find(mlocal_name(e)))
return * r;
else
throw blast_exception("blast tactic failed, ill-formed input goal", e);
}
virtual expr visit_app(expr const & e) {
if (is_meta(e)) {
return visit_meta_app(e);
} else {
expr f = visit(app_fn(e));
return mk_app(f, visit(app_arg(e)));
}
}
virtual expr visit_lambda(expr const & e) {
expr d = visit(binding_domain(e));
return mk_lambda(binding_name(e), d, visit(binding_body(e)), binding_info(e));
}
virtual expr visit_pi(expr const & e) {
expr d = visit(binding_domain(e));
return mk_pi(binding_name(e), d, visit(binding_body(e)), binding_info(e));
}
public:
to_blast_expr_fn(environment const & env, state & s,
name_map<level> & uvar2uref, name_map<pair<expr, expr>> & mvar2meta_mref,
name_map<expr> & local2href):
m_tc(env), m_state(s), m_uvar2uref(uvar2uref), m_mvar2meta_mref(mvar2meta_mref), m_local2href(local2href) {}
};
void init_curr_state(goal const & g) {
state & s = curr_state();
name_map<expr> local2href;
to_blast_expr_fn to_blast_expr(m_env, s, m_uvar2uref, m_mvar2meta_mref, local2href);
buffer<expr> hs;
g.get_hyps(hs);
for (expr const & h : hs) {
lean_assert(is_local(h));
expr new_type = normalize(to_blast_expr(mlocal_type(h)));
expr href = s.mk_hypothesis(local_pp_name(h), new_type, h);
local2href.insert(mlocal_name(h), href);
}
expr new_target = normalize(to_blast_expr(g.get_type()));
s.set_target(new_target);
lean_assert(s.check_invariant());
}
tctx m_tctx;
normalizer m_normalizer;
expr_map<expr> m_norm_cache; // normalization cache
void save_initial_context() {
hypothesis_idx_buffer hidxs;
m_curr_state.get_sorted_hypotheses(hidxs);
buffer<expr> ctx;
for (unsigned hidx : hidxs) {
ctx.push_back(mk_href(hidx));
}
m_initial_context = to_list(ctx);
}
expr to_tactic_proof(expr const & pr) {
// When a proof is found we must
// 1- Remove all occurrences of href's from pr
expr pr1 = unfold_hypotheses_ge(m_curr_state, pr, 0);
// 2- Replace mrefs with their assignments,
// and convert unassigned meta-variables back into
// tactic meta-variables.
expr pr2 = m_curr_state.instantiate_urefs_mrefs(pr1);
// TODO(Leo):
// 3- The external tactic meta-variables that have been instantiated
// by blast must also be communicated back to the tactic framework.
return pr2;
}
public:
blastenv(environment const & env, io_state const & ios, list<name> const & ls, list<name> const & ds):
m_env(env), m_ios(ios), m_ngen(*g_prefix), m_lemma_hints(to_name_set(ls)), m_unfold_hints(to_name_set(ds)),
m_not_reducible_pred(mk_not_reducible_pred(env)),
m_class_pred(mk_class_pred(env)),
m_instance_pred(mk_instance_pred(env)),
m_is_relation_pred(mk_is_relation_pred(env)),
m_tmp_ctx(mk_tmp_type_context()),
m_app_builder(*m_tmp_ctx),
m_fun_info_manager(*m_tmp_ctx),
m_congr_lemma_manager(m_app_builder, m_fun_info_manager),
m_abstract_expr_manager(m_fun_info_manager),
m_light_lt_manager(env),
m_rel_getter(mk_relation_info_getter(env)),
m_refl_getter(mk_refl_info_getter(env)),
m_symm_getter(mk_symm_info_getter(env)),
m_trans_getter(mk_trans_info_getter(env)),
m_unfold_macro_pred([](expr const &) { return true; }),
m_tctx(*this),
m_normalizer(m_tctx) {
init_uref_mref_href_idxs();
clear_choice_points();
}
~blastenv() {
finalize_imp_extension_entries();
for (auto ctx : m_tmp_ctx_pool)
delete ctx;
}
void init_classical_flag() {
if (is_standard(env())) {
expr p = m_tmp_ctx->mk_tmp_local(mk_Prop());
expr dec_p = mk_app(mk_constant(get_decidable_name()), p);
if (m_tmp_ctx->mk_class_instance(dec_p)) {
m_classical = true;
}
m_tmp_ctx->clear_cache();
}
}
bool classical() { return m_classical; }
void init_state(goal const & g) {
init_curr_state(g);
init_imp_extension_entries();
save_initial_context();
m_tctx.set_local_instances(m_initial_context);
m_tmp_ctx->set_local_instances(m_initial_context);
init_classical_flag();
}
optional<expr> operator()(goal const & g) {
init_state(g);
if (auto r = apply_simple_strategy()) {
return some_expr(to_tactic_proof(*r));
} else {
return none_expr();
}
}
environment const & get_env() const { return m_env; }
io_state const & get_ios() const { return m_ios; }
state & get_curr_state() { return m_curr_state; }
bool is_reducible(name const & n) const {
if (m_not_reducible_pred(n))
return false;
return !m_projection_info.contains(n);
}
projection_info const * get_projection_info(name const & n) const {
return m_projection_info.find(n);
}
expr mk_fresh_local(expr const & type, binder_info const & bi) {
return m_tmp_local_generator.mk_tmp_local(type, bi);
}
bool is_fresh_local(expr const & e) const {
return m_tmp_local_generator.is_tmp_local(e);
}
expr whnf(expr const & e) { return m_tctx.whnf(e); }
expr relaxed_whnf(expr const & e) { return m_tctx.relaxed_whnf(e); }
expr infer_type(expr const & e) { return m_tctx.infer(e); }
bool is_prop(expr const & e) { return m_tctx.is_prop(e); }
bool is_def_eq(expr const & e1, expr const & e2) { return m_tctx.is_def_eq(e1, e2); }
optional<expr> mk_class_instance(expr const & e) { return m_tctx.mk_class_instance(e); }
tmp_type_context * mk_tmp_type_context();
void recycle_tmp_type_context(tmp_type_context * ctx) {
lean_assert(ctx);
ctx->clear();
m_tmp_ctx_pool.push_back(ctx);
}
optional<congr_lemma> mk_congr_lemma_for_simp(expr const & fn, unsigned num_args) {
return m_congr_lemma_manager.mk_congr_simp(fn, num_args);
}
optional<congr_lemma> mk_congr_lemma_for_simp(expr const & fn) {
return m_congr_lemma_manager.mk_congr_simp(fn);
}
optional<congr_lemma> mk_congr_lemma(expr const & fn, unsigned num_args) {
return m_congr_lemma_manager.mk_congr(fn, num_args);
}
optional<congr_lemma> mk_congr_lemma(expr const & fn) {
return m_congr_lemma_manager.mk_congr(fn);
}
optional<congr_lemma> mk_rel_iff_congr(expr const & fn) {
return m_congr_lemma_manager.mk_rel_iff_congr(fn);
}
optional<congr_lemma> mk_rel_eq_congr(expr const & fn) {
return m_congr_lemma_manager.mk_rel_eq_congr(fn);
}
fun_info get_fun_info(expr const & fn) {
return m_fun_info_manager.get(fn);
}
fun_info get_fun_info(expr const & fn, unsigned nargs) {
return m_fun_info_manager.get(fn, nargs);
}
unsigned abstract_hash(expr const & e) {
return m_abstract_expr_manager.hash(e);
}
void init_imp_extension_entries() {
for (auto & p : get_imp_extension_manager().get_entries()) {
branch_extension & b_ext = curr_state().get_extension(p.second);
b_ext.inc_ref();
m_imp_extension_entries.emplace_back(p.first(), p.second, static_cast<imp_extension*>(&b_ext));
}
}
void finalize_imp_extension_entries() {
for (auto & e : m_imp_extension_entries) {
e.m_ext_of_ext_state->dec_ref();
}
}
void get_ext_path(imp_extension * _imp_ext, buffer<imp_extension*> & path) {
imp_extension * imp_ext = _imp_ext;
while (imp_ext != nullptr) {
path.push_back(imp_ext);
imp_ext = imp_ext->get_parent();
}
}
imp_extension_state & get_imp_extension_state(unsigned state_id) {
lean_assert(state_id < m_imp_extension_entries.size());
imp_extension_entry & e = m_imp_extension_entries[state_id];
imp_extension_state * ext_state = e.m_ext_state.get();
imp_extension * ext_of_curr_state = static_cast<imp_extension*>(&curr_state().get_extension(e.m_ext_id));
lean_assert(e.m_ext_of_ext_state);
imp_extension * ext_of_ext_state = e.m_ext_of_ext_state;
buffer<imp_extension*> curr_state_path, ext_state_path;
get_ext_path(ext_of_curr_state, curr_state_path);
get_ext_path(ext_of_ext_state, ext_state_path);
int i_curr = curr_state_path.size();
int i_ext = ext_state_path.size();
while (true) {
if (curr_state_path[--i_curr] != ext_state_path[--i_ext]) break;
if (i_curr == 0 || i_ext == 0) break;
}
while (i_ext >= 0) ext_state->undo_actions(ext_state_path[i_ext--]);
int j_curr = 0;
while (j_curr <= i_curr) ext_state->replay_actions(curr_state_path[j_curr++]);
ext_of_curr_state->inc_ref();
ext_of_ext_state->dec_ref();
e.m_ext_of_ext_state = ext_of_curr_state;
return *ext_state;
}
bool abstract_is_equal(expr const & e1, expr const & e2) {
return m_abstract_expr_manager.is_equal(e1, e2);
}
bool is_light_lt(expr const & e1, expr const & e2) {
return m_light_lt_manager.is_lt(e1, e2);
}
/** \brief Convert an external expression into a blast expression
It converts meta-variables to blast meta-variables, and ensures the expressions
are maximally shared.
\remark This procedure should only be used for debugging purposes. */
expr internalize(expr const & e) {
name_map<expr> local2href;
return to_blast_expr_fn(m_env, m_curr_state, m_uvar2uref, m_mvar2meta_mref, local2href)(e);
}
app_builder & get_app_builder() {
return m_app_builder;
}
type_context & get_type_context() {
return m_tctx;
}
expr normalize(expr const & e) {
auto it = m_norm_cache.find(e);
if (it != m_norm_cache.end())
return it->second;
expr r = m_normalizer(e);
m_norm_cache.insert(mk_pair(e, r));
return r;
}
bool is_relation_app(expr const & e, name & rop, expr & lhs, expr & rhs) {
return m_is_relation_pred(e, rop, lhs, rhs);
}
bool is_reflexive(name const & rop) const {
return static_cast<bool>(m_refl_getter(rop));
}
bool is_symmetric(name const & rop) const {
return static_cast<bool>(m_symm_getter(rop));
}
bool is_transitive(name const & rop) const {
return static_cast<bool>(m_trans_getter(rop, rop));
}
bool is_equivalence_relation_app(expr const & e, name & rop, expr & lhs, expr & rhs) {
return is_relation_app(e, rop, lhs, rhs) && is_reflexive(rop) && is_symmetric(rop) && is_transitive(rop);
}
optional<relation_info> get_relation_info(name const & rop) const {
return m_rel_getter(rop);
}
};
LEAN_THREAD_PTR(blastenv, g_blastenv);
struct scope_blastenv {
blastenv * m_prev_blastenv;
public:
scope_blastenv(blastenv & c):m_prev_blastenv(g_blastenv) { g_blastenv = &c; }
~scope_blastenv() { g_blastenv = m_prev_blastenv; }
};
environment const & env() {
lean_assert(g_blastenv);
return g_blastenv->get_env();
}
io_state const & ios() {
lean_assert(g_blastenv);
return g_blastenv->get_ios();
}
type_context & get_type_context() {
lean_assert(g_blastenv);
return g_blastenv->get_type_context();
}
app_builder & get_app_builder() {
lean_assert(g_blastenv);
return g_blastenv->get_app_builder();
}
state & curr_state() {
lean_assert(g_blastenv);
return g_blastenv->get_curr_state();
}
bool is_reducible(name const & n) {
lean_assert(g_blastenv);
return g_blastenv->is_reducible(n);
}
projection_info const * get_projection_info(name const & n) {
lean_assert(g_blastenv);
return g_blastenv->get_projection_info(n);
}
bool is_relation_app(expr const & e, name & rop, expr & lhs, expr & rhs) {
lean_assert(g_blastenv);
return g_blastenv->is_relation_app(e, rop, lhs, rhs);
}
bool is_relation_app(expr const & e) {
name rop; expr lhs, rhs;
return is_relation_app(e, rop, lhs, rhs);
}
bool is_reflexive(name const & rop) {
lean_assert(g_blastenv);
return g_blastenv->is_reflexive(rop);
}
bool is_symmetric(name const & rop) {
lean_assert(g_blastenv);
return g_blastenv->is_symmetric(rop);
}
bool is_transitive(name const & rop) {
lean_assert(g_blastenv);
return g_blastenv->is_transitive(rop);
}
bool is_equivalence_relation_app(expr const & e, name & rop, expr & lhs, expr & rhs) {
lean_assert(g_blastenv);
return g_blastenv->is_equivalence_relation_app(e, rop, lhs, rhs);
}
optional<relation_info> get_relation_info(name const & rop) {
lean_assert(g_blastenv);
return g_blastenv->get_relation_info(rop);
}
expr whnf(expr const & e) {
lean_assert(g_blastenv);
return g_blastenv->whnf(e);
}
expr relaxed_whnf(expr const & e) {
lean_assert(g_blastenv);
return g_blastenv->relaxed_whnf(e);
}
expr infer_type(expr const & e) {
lean_assert(g_blastenv);
return g_blastenv->infer_type(e);
}
expr normalize(expr const & e) {
lean_assert(g_blastenv);
return g_blastenv->normalize(e);
}
bool is_prop(expr const & e) {
lean_assert(g_blastenv);
return g_blastenv->is_prop(e);
}
bool is_def_eq(expr const & e1, expr const & e2) {
lean_assert(g_blastenv);
return g_blastenv->is_def_eq(e1, e2);
}
optional<expr> mk_class_instance(expr const & e) {
lean_assert(g_blastenv);
return g_blastenv->mk_class_instance(e);
}
expr mk_fresh_local(expr const & type, binder_info const & bi) {
lean_assert(g_blastenv);
return g_blastenv->mk_fresh_local(type, bi);
}
bool is_fresh_local(expr const & e) {
lean_assert(g_blastenv);
return g_blastenv->is_fresh_local(e);
}
optional<congr_lemma> mk_congr_lemma_for_simp(expr const & fn, unsigned num_args) {
lean_assert(g_blastenv);
return g_blastenv->mk_congr_lemma_for_simp(fn, num_args);
}
optional<congr_lemma> mk_congr_lemma_for_simp(expr const & fn) {
lean_assert(g_blastenv);
return g_blastenv->mk_congr_lemma_for_simp(fn);
}
optional<congr_lemma> mk_congr_lemma(expr const & fn, unsigned num_args) {
lean_assert(g_blastenv);
return g_blastenv->mk_congr_lemma(fn, num_args);
}
optional<congr_lemma> mk_congr_lemma(expr const & fn) {
lean_assert(g_blastenv);
return g_blastenv->mk_congr_lemma(fn);
}
optional<congr_lemma> mk_rel_iff_congr(expr const & fn) {
lean_assert(g_blastenv);
return g_blastenv->mk_rel_iff_congr(fn);
}
optional<congr_lemma> mk_rel_eq_congr(expr const & fn) {
lean_assert(g_blastenv);
return g_blastenv->mk_rel_eq_congr(fn);
}
fun_info get_fun_info(expr const & fn) {
lean_assert(g_blastenv);
return g_blastenv->get_fun_info(fn);
}
fun_info get_fun_info(expr const & fn, unsigned nargs) {
lean_assert(g_blastenv);
return g_blastenv->get_fun_info(fn, nargs);
}
unsigned abstract_hash(expr const & e) {
lean_assert(g_blastenv);
return g_blastenv->abstract_hash(e);
}
unsigned register_imp_extension(std::function<imp_extension_state*()> & ext_state_maker) {
return get_imp_extension_manager().register_imp_extension(ext_state_maker);
}
imp_extension_state & get_imp_extension_state(unsigned state_id) {
lean_assert(g_blastenv);
return g_blastenv->get_imp_extension_state(state_id);
}
bool abstract_is_equal(expr const & e1, expr const & e2) {
lean_assert(g_blastenv);
return g_blastenv->abstract_is_equal(e1, e2);
}
bool is_light_lt(expr const & e1, expr const & e2) {
lean_assert(g_blastenv);
return g_blastenv->is_light_lt(e1, e2);
}
bool classical() {
lean_assert(g_blastenv);
return g_blastenv->classical();
}
void display_curr_state() {
curr_state().display(env(), ios());
display("\n");
}
void display_expr(expr const & e) {
ios().get_diagnostic_channel() << e << "\n";
}
void display(char const * msg) {
ios().get_diagnostic_channel() << msg;
}
void display(sstream const & msg) {
ios().get_diagnostic_channel() << msg.str();
}
scope_assignment::scope_assignment():m_keep(false) {
lean_assert(g_blastenv);
g_blastenv->m_tctx.push();
}
scope_assignment::~scope_assignment() {
if (m_keep)
g_blastenv->m_tctx.commit();
else
g_blastenv->m_tctx.pop();
}
void scope_assignment::commit() {
m_keep = true;
}
scope_unfold_macro_pred::scope_unfold_macro_pred(unfold_macro_pred const & pred):
m_old_pred(g_blastenv->m_unfold_macro_pred) {
g_blastenv->m_unfold_macro_pred = pred;
g_blastenv->m_norm_cache.clear(); // TODO(Leo): check if we need better solution
}
scope_unfold_macro_pred::~scope_unfold_macro_pred() {
g_blastenv->m_unfold_macro_pred = m_old_pred;
g_blastenv->m_norm_cache.clear();
}
struct scope_debug::imp {
scoped_expr_caching m_scope1;
blastenv m_benv;
scope_blastenv m_scope2;
scope_congruence_closure m_scope3;
scope_config m_scope4;
scope_trace m_scope5;
imp(environment const & env, io_state const & ios):
m_scope1(true),
m_benv(env, ios, list<name>(), list<name>()),
m_scope2(m_benv),
m_scope4(ios.get_options()) {
expr aux_mvar = mk_metavar("dummy_mvar", mk_true());
goal aux_g(aux_mvar, mlocal_type(aux_mvar));
m_benv.init_state(aux_g);
}
};
scope_debug::scope_debug(environment const & env, io_state const & ios):
m_imp(new imp(env, ios)) {
}
scope_debug::~scope_debug() {}
/** \brief We need to redefine infer_local and infer_metavar, because the types of hypotheses
and blast meta-variables are stored in the blast state */
class tmp_tctx : public tmp_type_context {
public:
tmp_tctx(environment const & env, io_state const & ios, tmp_local_generator & gen):
tmp_type_context(env, ios, gen) {}
/** \brief Return the type of a local constant (local or not).
\remark This method allows the customer to store the type of local constants
in a different place. */
virtual expr infer_local(expr const & e) const {
state const & s = curr_state();
if (is_href(e)) {
hypothesis const & h = s.get_hypothesis_decl(e);
return h.get_type();
} else {
return mlocal_type(e);
}
}
virtual expr infer_metavar(expr const & m) const {
if (is_mref(m)) {
state const & s = curr_state();
metavar_decl const * d = s.get_metavar_decl(m);
lean_assert(d);
return d->get_type();
} else {
// The type of external meta-variables is encoded in the usual way.
// In temporary type_context objects, we may have temporary meta-variables
// created by external modules (e.g., simplifier and app_builder).
return mlocal_type(m);
}
}
};
tmp_type_context * blastenv::mk_tmp_type_context() {
tmp_type_context * r;
if (m_tmp_ctx_pool.empty()) {
r = new tmp_tctx(m_env, m_ios, m_tmp_local_generator);
// Design decision: in the blast tactic, we only consider the instances that were
// available in initial goal provided to the blast tactic.
// So, we only need to setup the local instances when we create a new (temporary) type context.
// This is important since whenever we set the local instances the cache in at type context is
// invalidated.
r->set_local_instances(m_initial_context);
} else {
r = m_tmp_ctx_pool.back();
m_tmp_ctx_pool.pop_back();
}
return r;
}
blast_tmp_type_context::blast_tmp_type_context(unsigned num_umeta, unsigned num_emeta) {
lean_assert(g_blastenv);
m_ctx = g_blastenv->mk_tmp_type_context();
m_ctx->clear();
m_ctx->set_next_uvar_idx(num_umeta);
m_ctx->set_next_mvar_idx(num_emeta);
}
blast_tmp_type_context::blast_tmp_type_context() {
lean_assert(g_blastenv);
m_ctx = g_blastenv->mk_tmp_type_context();
}
blast_tmp_type_context::~blast_tmp_type_context() {
g_blastenv->recycle_tmp_type_context(m_ctx);
}
expr internalize(expr const & e) {
lean_assert(g_blastenv);
return g_blastenv->internalize(e);
}
}
optional<expr> blast_goal(environment const & env, io_state const & ios, list<name> const & ls, list<name> const & ds,
goal const & g) {
scoped_expr_caching scope1(true);
blast::blastenv b(env, ios, ls, ds);
blast::scope_blastenv scope2(b);
blast::scope_congruence_closure scope3;
blast::scope_config scope4(ios.get_options());
blast::scope_trace scope5;
return b(g);
}
void initialize_blast() {
blast::g_prefix = new name(name::mk_internal_unique_name());
blast::g_tmp_prefix = new name(name::mk_internal_unique_name());
blast::g_imp_extension_manager = new blast::imp_extension_manager();
}
void finalize_blast() {
delete blast::g_imp_extension_manager;
delete blast::g_prefix;
delete blast::g_tmp_prefix;
}
}