lean2/library/standard/logic.lean
Leonardo de Moura 6e6f778ecf fix(kernel/converter): missing case for local constants
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2014-06-30 12:57:25 -07:00

133 lines
3.8 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura
definition Bool [inline] := Type.{0}
inductive false : Bool :=
-- No constructors
theorem false_elim (c : Bool) (H : false)
:= false_rec c H
inductive true : Bool :=
| trivial : true
definition not (a : Bool) := a → false
precedence `¬`:40
notation `¬` a := not a
notation `assume` binders `,` r:(scoped f, f) := r
notation `take` binders `,` r:(scoped f, f) := r
theorem not_intro {a : Bool} (H : a → false) : ¬ a
:= H
theorem not_elim {a : Bool} (H1 : ¬ a) (H2 : a) : false
:= H1 H2
theorem absurd {a : Bool} (H1 : a) (H2 : ¬ a) : false
:= H2 H1
theorem mt {a b : Bool} (H1 : a → b) (H2 : ¬ b) : ¬ a
:= assume Ha : a, absurd (H1 Ha) H2
theorem contrapos {a b : Bool} (H : a → b) : ¬ b → ¬ a
:= assume Hnb : ¬ b, mt H Hnb
theorem absurd_elim {a : Bool} (b : Bool) (H1 : a) (H2 : ¬ a) : b
:= false_elim b (absurd H1 H2)
inductive and (a b : Bool) : Bool :=
| and_intro : a → b → and a b
infixr `/\` 35 := and
infixr `∧` 35 := and
theorem and_elim_left {a b : Bool} (H : a ∧ b) : a
:= and_rec (λ a b, a) H
theorem and_elim_right {a b : Bool} (H : a ∧ b) : b
:= and_rec (λ a b, b) H
inductive or (a b : Bool) : Bool :=
| or_intro_left : a → or a b
| or_intro_right : b → or a b
infixr `\/` 30 := or
infixr `` 30 := or
theorem or_elim (a b c : Bool) (H1 : a b) (H2 : a → c) (H3 : b → c) : c
:= or_rec H2 H3 H1
inductive eq {A : Type} (a : A) : A → Bool :=
| refl : eq a a
infix `=` 50 := eq
theorem subst {A : Type} {a b : A} {P : A → Bool} (H1 : a = b) (H2 : P a) : P b
:= eq_rec H2 H1
theorem trans {A : Type} {a b c : A} (H1 : a = b) (H2 : b = c) : a = c
:= subst H2 H1
theorem symm {A : Type} {a b : A} (H : a = b) : b = a
:= subst H (refl a)
theorem congr1 {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) (a : A) : f a = g a
:= subst H (refl (f a))
theorem congr2 {A B : Type} {a b : A} (f : A → B) (H : a = b) : f a = f b
:= subst H (refl (f a))
theorem equal_f {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) : ∀ x, f x = g x
:= take x, congr1 H x
definition cast {A B : Type} (H : A = B) (a : A) : B
:= eq_rec a H
-- TODO(Leo): check why unifier needs 'help' in the following theorem
theorem cast_refl.{l} {A : Type.{l}} (a : A) : cast (refl A) a = a
:= refl (cast (refl A) a)
definition iff (a b : Bool) := (a → b) ∧ (b → a)
infix `↔` 50 := iff
theorem iff_intro {a b : Bool} (H1 : a → b) (H2 : b → a) : a ↔ b
:= and_intro H1 H2
theorem iff_elim {a b c : Bool} (H1 : (a → b) → (b → a) → c) (H2 : a ↔ b) : c
:= and_rec H1 H2
theorem iff_elim_left {a b : Bool} (H : a ↔ b) : a → b
:= iff_elim (assume H1 H2, H1) H
theorem iff_elim_right {a b : Bool} (H : a ↔ b) : b → a
:= iff_elim (assume H1 H2, H2) H
theorem iff_mp_left {a b : Bool} (H1 : a ↔ b) (H2 : a) : b
:= (iff_elim_left H1) H2
theorem iff_mp_right {a b : Bool} (H1 : a ↔ b) (H2 : b) : a
:= (iff_elim_right H1) H2
inductive Exists {A : Type} (P : A → Bool) : Bool :=
| exists_intro : ∀ (a : A), P a → Exists P
notation `∃` binders `,` r:(scoped P, Exists P) := r
theorem exists_elim {A : Type} {P : A → Bool} {B : Bool} (H1 : ∃ x : A, P x) (H2 : ∀ (a : A) (H : P a), B) : B
:= Exists_rec H2 H1
definition inhabited (A : Type) := ∃ x : A, true
theorem inhabited_intro {A : Type} (a : A) : inhabited A
:= exists_intro a trivial
theorem inhabited_elim {A : Type} {B : Bool} (H1 : inhabited A) (H2 : A → B) : B
:= exists_elim H1 (λ (a : A) (H : true), H2 a)
theorem inhabited_Bool : inhabited Bool
:= inhabited_intro true
theorem inhabited_fun (A : Type) {B : Type} (H : inhabited B) : inhabited (A → B)
:= inhabited_elim H (take (b : B), inhabited_intro (λ a : A, b))